一种基于全局−局部特征逐级融合的阿尔茨海默病分类网络
A Hierarchical Global-Local Feature Fusion Network for Alzheimer’s Disease Classification
-
摘要: 针对根据患者脑部结构性磁共振成像(structural Magnetic Resonance Imaging, sMRI)来辅助诊断阿尔茨海默病(Alzheimer's Disease, AD)和轻度认知障碍(Mild Cognitive Impairment, MCI)的准确率尚待提高的问题,本文提出一种融合卷积神经网络(Convolutional Neural Network, CNN)和Transformer架构的深度学习网络架构,通过高效捕捉sMRI数据中的局部和全局特征来提升诊断性能。该模型利用Biformer块的双层路由注意力机制(Bi-Level Routing Attention, BRA)捕获全脑sMRI的长距离依赖关系,融合倒残差卷积块以更有效地提取局部纹理和边缘特征,并引入语义差异模块(Semantic Difference Module, SDM)增强边界模糊区域的特征表示。在阿尔茨海默病神经影像倡议(Alzheimer's Disease Neuroimaging Initiative,ADNI)数据集上的实验表明,该模型在AD分类和MCI转化预测任务中的准确率分别达92.56%和82.69%,优于多种现有的分类方法。Abstract: To improve the diagnostic accuracy for Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) using structural Magnetic Resonance Imaging (sMRI) , this paper proposes a deep learning architecture by integrating Convolutional Neural Network (CNN) and Transformer frameworks, which is designed to efficiently capture both local and global features from sMRI data. Specifically, the model utilizes a Biformer block with its Bi-Level Routing Attention (BRA) to capture long-range dependencies across the whole-brain sMRI, an Inverted Residual Convolution block to enhance the extraction of local texture and edge features, and a Semantic Difference Module (SDM) to refine feature representation in boundary-blurred regions. Experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset demonstrate that the proposed model achieves classification accuracies of 92.56% for AD and 82.69% for MCI conversion prediction, outperforming several state-of-the-art classification methods.
下载: