Abstract:
In order to explore the spatial optimization strategy of outdoor thermal comfort environment of university campus in hot summer and cold winter regions, a university in Shanghai was taken as the research object, and field measurement of meteorological parameters conducted under typical spatial morphology conditions of university campus. At the same time, combined with the thermal comfort questionnaire of college students, the physiological equivalent temperature (PET) of the subjects was calculated by using Rayman software. This study performed temperature and humidity movement measurement, time correction, and spatial interpolation of the data to obtain the temperature and humidity distribution of the entire campus, and then the correlation between the temperature and humidity of the campus and the characteristic parameters of the surface morphology were analyzed. The results showed that the “neutral” PET value of university students in summer was 30.60 ℃, and PET index was negatively correlated with air temperature and positively correlated with relative humidity, and air temperature was more correlated with PET index. The sky view factor and pervious surface fraction have a significant positive correlation with air temperature, and there is a significant negative correlation between aspect ratio, building surface fraction, height of roughness elements and air temperature. In the planning and design of campus building and landscape, the rise of air temperature can be alleviated by reasonably designing the surface morphological characteristics, with the goal of enhancing students' thermal comfort. This study can provide an optimized reference for the outdoor space planning of university campus in hot summer and cold winter regions, which is helpful to improve the thermal comfort environment of campus.