广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (04): 25-31.doi: 10.12052/gdutxb.170121

• 综合研究 • 上一篇    下一篇

步行能量采集器中磁致伸缩材料的机-磁耦合特性研究

王亚文, 谷爱昱, 严柏平, 雒浪   

  1. 广东工业大学 自动化学院, 广东 广州 510006
  • 收稿日期:2017-08-05 出版日期:2018-07-09 发布日期:2018-05-24
  • 作者简介:王亚文(1992-),女,硕士研究生,主要研究方向为超磁致伸缩材料能量采集技术.E-mail:1512022644@qq.com
  • 基金资助:
    国家自然科学基金资助项目(220413156)

Magneto-Magnetic Coupling Characteristics of Magnetostrictive Materials in Walking Energy Collector

Wang Ya-wen, Gu Ai-yu, Yan Bai-ping, Luo Lang   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2017-08-05 Online:2018-07-09 Published:2018-05-24

摘要: 针对步行能量采集器中磁致伸缩材料的机–;磁耦合特性,提出了一种磁致伸缩材料机–;磁耦合特性的研究方法,通过观察磁畴角度偏转的规律,研究应力和磁场载荷同时作用下的超磁致伸缩材料的机–;磁耦合特性.发现外加磁场增加有利于磁畴的偏转和跃迁,而应力各向异性能不利于超磁致伸缩材料磁化的进行,使超磁致伸缩材料的磁化更加困难.依据以上结论选择最佳的外加磁场和应力的取值,并且计算磁致伸缩材料对外产生的磁化强度,该磁化强度具有更高的效率.

关键词: 磁致伸缩, 磁畴, 磁场, 应力, 磁化强度

Abstract: In order to provide the parameter basis for the design of the walking energy collector, a method is proposed to study the coupling characteristics of the magnetic actuator of the magnetostrictive material. By observing the law of the angle deflection of the magnetic field, the magnetic coupling characteristics of the magnetostrictive material is studied, the best external magnetic field and the value of stress selected, and the external magnetization produced by the magnetostrictive material calculated. It is found that the increase of external magnetic field is beneficial to the deflection and transition of magnetic domain. However, the stress anisotropy can be detrimental to the magnetization of the giant magnetostrictive material, making the magnetization of the magnetostrictive material more difficult.

Key words: magnetostrictive, magnetic domain, magnetic field, stress, magnetization

中图分类号: 

  • TM619
[1] 方岱宁, 万永平, 冯雪, 等. 功能铁磁材料的变形与断裂的研究进展[J]. 力学进展, 2006,(4):485-506.FANG D N, WAN Y P, FENG X, et al. Research progress on deformation and fracture of functional ferromagnetic materials[J]. Advances in Mechanics, 2006,(4):485-506.
[2] 杨勇, 李琳. 磁致伸缩作动器的电-磁-机耦合动力特性[J]. 应用力学学报, 2009, 26(3):558-563+631.YANG Y, LI L. Electric-magnetic-mechanical coupling dynamic characteristics of magnetostrictive actuator[J]. Chinese Journal of Applied Mechanics, 2009, 26(3):558-563+631.
[3] 闫荣格, 王博文, 曹淑瑛, 等. 超磁致伸缩致动器的磁-机械强耦合模型[J]. 中国电机工程学报, 2003,(7):107-111.YAN R G, WANG B W, CAO S Y, et al. Magnetic-mechanical strong coupling model of giant magnetostrictive actuator[J]. Proceeding of the CSEE, 2003,(7):107-111.
[4] DELINCE F, GENON A, GILLARD J M. Numerical computation of the Magnetostrictive effect in ferromagnetic materials[J]. Journal of Applied Physics, 1991, 69(72):5794-5710.
[5] BENATAR J G, FLATAU A B. FEM implementation of a magnetostrictive transducer[J]. Smart Structures and Materials, 2005, 57(64):482-493.
[6] KARIM A, MONDHER B. 3D FEM of magnetostriction phenomena using coupled constitutive laws[J]. International Journal of Applied Electromagnetics and Mechanics, 2004, 19(39):367-371.
[7] 贺西平, 孙进才, 李斌. 低频大功率稀土磁致伸缩弯张换能器的有限元设计理论及实验研究:Ⅰ. 理论部分[J]. 声学学报, 2000,(6):521-527.HE X P, SUN J C, LI B. Finite element design theory and experimental research on low frequency high power rare earth magnetostrictive bending transducer:Ⅰ. Theoretical part[J]. Journal of Acoustics, 2000,(6):521-527.
[8] 王博文, 闫荣格. 稀土超磁致伸缩材料、应用与器件[J]. 河北工业大学学报, 2004,(2):16-22.WANG B W, YAN R G. Rare earth giant magnetostrictive materials, applications and devices[J]. Journal of Hebei University of Technology, 2004,(2):16-22.
[9] 孙泓, 何玉定, 胡社军. 两相纳米晶稀土永磁材料的研究进展[J]. 广东工业大学学报, 2003, 20(4):11-18.SUN H, HE Y D, HU S J. Research progress on two-phase nanocrystalline rare earth permanent magnetic materials[J]. Guangdong University of Technology, 2003, 20(4):11-18.
[10] 刘敬华, 张天丽, 王敬民, 等. 巨磁致伸缩材料及应用研究进展[J]. 中国材料进展, 2012, 31(4):1-12.LIU J H, ZHANG T L, WANG J M, et al. Recent advances in research on giant magnetostrictive materials and their applications[J]. Progress in Materials Research, 2012, 31(4):1-12.
[11] 陈善飞, 王遵义, 薛立新, 等. 基于磁性液体磁致伸缩的微位移驱动实验研究[J]. 兵工学报, 2010, 31(3):350-354.CHEN S F, WANG Z Y, XUE L X, et al. Experimental study on micro-displacement based on magnetostriction of magnetic liquid[J]. Journal of Bing Eng, 2010, 31(3):350-354.
[12] 刘亚丕, 王子生, 韩宝善, 等. 磁性材料磁畴动态观测仪的研制[J]. 磁性材料及器件, 2006,(5):42-45.LIU Y P, WANG Z S, HAN B S, et al. Development of magnetic domain dynamic observer[J]. Magnetic Materials and Devices, 2006,(5):42-45.
[13] 李立毅, 严柏平, 张成明. 驱动频率对超磁致伸缩致动器的损耗和温升特性的影响[J]. 中国电机工程学报, 2011, 31(18):124-129.LI L B, YAN B P, ZHANG C M. Effect of driving frequency on loss and temperature rise of giant magnetostrictive actuator[J]. Proceeding of the CSEE, 2011, 31(18):124-129.
[14] 吴义政. 自旋转向相变中的条纹磁畴研究[J]. 物理, 2005,(2):104-108.WU Y Z. Study of stripe magnetic domain in the spin-steering phase transition[J]. Physics, 2005,(2):104-108.
[15] 黎连修. 磁致伸缩和磁记忆问题研究[J]. 无损检测, 2004,(3):109-112.LI L X. Research on magnetostrictive and magnetic memory problems[J]. Nondestructive Testing, 2004,(3):109-112.
[16] 刘达, 韩晓冰, 房龙. 3维直角坐标系直接转换算法的研究与实现[J]. 测绘与空间地理信息, 2012, 35(5):175-178, 182.LIU D, HAN X B, FANG L. Research and implementation of direct conversion algorithm for 3-D cartesian coordinate system[J]. Mapping & Spatial Information, 2012, 35(5):175-178, 182.
[17] ZHANG H, ZENG D C. Magnetostriction and its inverse effect in Tb0.3Dy0.7Fe2 alloy[J]. J Appl Phys, 2010, 107(74):123-128.
[18] 余晋岳, 朱军, 周狄, 等. 微型NiFe磁性薄膜元件中Neel畴壁极性的转变过程[J]. 金属学报, 2000,(4):359-363.YU J Y, ZHU J, ZHOU D, et al. Changes in neel domain wall polarity in micro NiFe magnetic thin films[J]. Acta Metallurgica Sinica, 2000,(4):359-363.
[19] MEI W, OKANE T, UMEDA T. Magnetostriction of Tb-Dy-Fe crystals[J]. J Appl Phys, 1998, 84(49):6208-6216.
[20] 李素珍. 稀土超磁致伸缩材料与器件发展现状[J]. 稀土信息, 2005,(4):28-29.LI S Z. Recent developments of rare earth giant magnetostrictive materials and devices[J]. Rare Earth Information, 2005,(4):28-29.
[21] JILES D C. Introduction to Magnetism and Magnetic Materials[M]. New York:Chapman and Hall, 1991:79-100.
[22] JILES D C, ATHERTON D L. Theory of ferromagnetic hysteresis[J]. J Magn Magn Mater, 1986, 61(98):48-60.
[23] WANG B L, JIN Y M. Magnetization and magnetostriction of terfenol-D near spin reorientation boundary[J]. J Appl Phys, 2012, 111(l0):103-108.
[24] ZHANG C S, MA T Y, YAN M. Induced additional anisotropy influences on magnetostriction of giant magnetostrictive materials[J]. J Appl Phys, 2012, 112(10):103-108.
[25] MEI W, OKANE T, UMEDA T. Magnetostriction of Tb-Dy-Fe crystals[J]. J Appl Phys, 1998, 84(37):6208-6216.
[26] 刘美全, 徐章遂, 陈鹏, 等. 磁场作用下缺陷微磁生成机理研究[J]. 计算机测量与控制, 2010, 18(2):437-439.LIU M Q, XU Z S, CHEN P, et al. Study on mechanism of defective micro-magnetism generated by magnetic field[J]. Computer Measurement and Control, 2010, 18(2):437-439.
[27] 王建国, 邵雪辉. 磁滞回线的物理机理[J]. 河北建筑工程学院学报, 2001,(3):90-92.WANG J G, SHAO X H. Physical mechanism of hysteresis loop[J]. Journal of Hebei Institute of Architecture and Civil Engineering, 2001,(3):90-92.
[28] 王跃虎, 王博文, 王莉, 等. 磁致伸缩材料的磁-热-力耦合模型及其仿真分析[J]. 磁性材料及器件, 2015, 46(6):1-5.WANG Y H, WANG B W, WANG L, et al. Magnetic-thermo-mechanical coupling model of magnetostrictive material and its simulation analysis[J]. Magnetic Materials and Devices, 2015, 46(6):1-5.
[29] OUANDELI R C. Modern Magnetic Materials Principle And Application[M]. Beijing:Chemical Industry Press. 2004:256-258.
[30] 郭雪涛, 王修勇, 孟庆甲. 超磁化条件下超磁致伸缩作动器迟滞现象研究[J]. 湖南工程学院学报(自然科学版), 2013, 23(4):62-67.GUO X T, WANG X Y, MENG Q J. Study on hysteresis of giant magnetostrictive actuator under super magnetization conditions[J]. Journal of Hunan Institute of Engineering:Natural Science Edition, 2013, 23(4):62-67.
[31] 冯红亮, 杨志红, 扈晓斌. 磁致伸缩效应原理及在工业测量中的应用[J]. 仪表技术与传感器, 2009,(S1):344-346.FENG H L, YANG Z H, HU X B. Magnetostrictive effects and its application in industrial measurement[J]. Instrumentation Technology and Sensor, 2009,(S1):344-346.
[32] 代前国, 周新志. 大位移磁致伸缩传感器的弹性波建模与分析[J]. 传感技术学报, 2013, 26(2):195-199.DAI Q G, ZHOU X Z. Elastic wave modeling and analysis of large displacement magnetostrictive sensor[J]. Chinese Journal of Sensors and Actuaries, 2013, 26(2):195-199.
[1] 王晓锋, 何小琦, 尧彬. PBGA封装回流焊翘曲变形仿真与验证[J]. 广东工业大学学报, 2020, 37(02): 94-101.
[2] 周若洋, 杨雪强, 刘攀, 郑丽婷, 陈涛. 不同加荷方向下横观各向同性饱和粗砂的真三轴试验研究[J]. 广东工业大学学报, 2020, 37(01): 58-64.
[3] 禹智涛, 潘浩, 贺绍华. 预应力轴压比对节段拼装桥墩力学性能影响分析[J]. 广东工业大学学报, 2019, 36(04): 85-91.
[4] 马平, 廖明易, 王志勇. 起重机械用绳排索具力学与疲劳特性研究[J]. 广东工业大学学报, 2016, 33(05): 65-68.
[5] 杨雪强, 刘勇健, 吉小明. 考虑土体自重应力场的拱效计算方法[J]. 广东工业大学学报, 2016, 33(03): 76-80.
[6] 傅胤荣, 胡义华, 金亚洪. 应力发光材料BaZrSi3O9的制备与发光特性研究[J]. 广东工业大学学报, 2015, 32(04): 17-20.
[7] 刘昆,彭美春,林怡青,王海龙. 基于ANSYS Workbench鼓式制动器冲焊蹄的有限元分析[J]. 广东工业大学学报, 2013, 30(1): 92-96.
[8] 唐露新,黎杰,罗锡海,陈明开. 基于误差与抗干扰优化的中频强磁场测量仪设计[J]. 广东工业大学学报, 2012, 29(4): 27-32.
[9] 刘宗凯, 周本谋, 刘会星, 纪延亮, 刘志刚. 共面波导激励电磁体积力的数值研究[J]. 广东工业大学学报, 2011, 28(4): 22-25.
[10] 原青云1, 孙永卫1, 张希军1, 李贤军2. IEC标准试验平台上辐射场分布规律研究[J]. 广东工业大学学报, 2011, 28(3): 24-27.
[11] 谷泓, 潘晓建, 郭锦屏. 基于电磁场特性分析软件的静电传感器电极仿真方法[J]. 广东工业大学学报, 2011, 28(3): 54-58.
[12] 路浩东 , 袁鸽成 , 冷文兵 , 李仲华 , 朱振华. 极化电位对5083铝合金型材应力腐蚀行为的影响[J]. 广东工业大学学报, 2010, 27(2): 43-46.
[13] 赵韦人; 孙长军; 张伟; 俞军; . 磁场调制的水基四氧化三铁磁流体的光学透射率[J]. 广东工业大学学报, 2009, 26(4): 30-33.
[14] 冷文兵; 袁鸽成; 倪学明; 路浩东;. 5083铝合金在3.5%NaCl溶液中的应力腐蚀行为[J]. 广东工业大学学报, 2009, 26(1): 7-.
[15] 任凤鸣; 袁兵;. 垫层对工作井应力与变形影响的分析[J]. 广东工业大学学报, 2007, 24(1): 56-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!