广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (06): 83-89.doi: 10.12052/gdutxb.180030

• • 上一篇    下一篇

随机离散事件系统的故障预测

叶彬彬, 刘富春   

  1. 广东工业大学 计算机学院, 广东 广州 510006
  • 收稿日期:2018-03-07 出版日期:2018-11-23 发布日期:2018-11-23
  • 通信作者: 刘富春(1971-),男,教授,博士生导师,主要研究方向为控制理论与控制工程、算法分析与设计.E-mail:fliu2011@163.com E-mail:fliu2011@163.com
  • 作者简介:叶彬彬(1989-),男,硕士研究生,主要研究方向为控制理论与控制工程、算法分析与设计.
  • 基金资助:
    国家自然科学基金资助项目(61273118,6167020389);广东省教育厅省级重大项目(2014KZDXM033);广东省公益研究与能力建设专项资金项目(2015A030402006)

Failure Predictability of Stochastic Discrete Event Systems

Ye Bin-bin, Liu Fu-chun   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2018-03-07 Online:2018-11-23 Published:2018-11-23

摘要: 针对随机系统模型,提出一种随机离散事件系统的故障预测方法. 先对随机离散事件系统的故障可预测性进行形式化,再通过引入概率转移矩阵构建一个故障预测器自动机,得到关于随机离散事件系统的故障可预测性的充分必要条件. 由此,在故障预测器的基础上,通过计算其扩展马尔可夫矩阵,可判定随机离散事件系统是否具有故障可预测性,从而实现对故障事件在其发生之前的准确预测.

关键词: 随机离散事件系统, 故障诊断, 故障预测, 马尔可夫矩阵

Abstract: An approach for failure prediction for stochastic DESs modeled by stochastic finite state automata is proposed. Firstly, the notion of predictability of failure events of stochastic systems is formalized. Then a predictor automaton is constructed by introducing the probability transition matrix, and a necessary and sufficient condition of the predictability of stochastic systems is presented. Based on the fault predictor, a method for checking whether the considered stochastic DES has been equipped with the capability of failure prediction is developed by computing the extended Markov matrix, which results in the realization of accurate prediction of the failure events before occurring.

Key words: stochastic discrete event systems, failure diagnosis, failure prediction, Markov matrix

中图分类号: 

  • TP301.1
[1] SAMPATH M, SENGUPTA R, LAFORTUNE S, et al. Diagnosability of discrete-event systems[J]. IEEE Transactions on Automatic Control, 1995, 40(9):1555-1575
[2] ZAYTOON J, LAFORTUNE S. Overview of fault diagnosis methods for discrete event systems[J]. Annual Reviews in Control, 2013, 37(2):308-320
[3] QIU W, KUMAR R. Decentralized failure diagnosis of discrete event systems[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2006, 36(2):384-395
[4] CHEN Z, LIN F, WANG C, et al. Active diagnosability of discrete event systems and its application to battery fault diagnosis[J]. IEEE Transactions on Control Systems Technology, 2014, 22(5):1892-1898
[5] KWONG R H, YONGEMALLO D L. Fault diagnosis in discrete event systems with incomplete models:learnability and diagnosability[J]. IEEE Transactions on Cybernetics, 2015, 45(7):1236-1249
[6] 王晓宇, 欧阳丹彤, 赵剑. 不完备模型下的离散事件系统诊断方法[J]. 软件学报, 2012, 23(3):465-475 WANG X Y, OUYANG D T, ZHAO J. Discrete-event system diagnosis upon incomplete model[J]. Journal of Software, 2012, 23(3):465-475
[7] ZHANG J, KHALGUI M, LI Z, et al. Reconfigurable coordination of distributed discrete event control systems[J]. IEEE Transactions on Control Systems Technology, 2015, 23(1):323-330
[8] LIU F, QIU D. Diagnosability of fuzzy discrete-event systems:a fuzzy approach[J]. IEEE Transactions on Fuzzy Systems, 2006, 17(2):372-384
[9] GENC S, LAFORTUNE S. Predictability of event occurrences in partially-observed discrete-event systems[J]. Automatica, 2009, 45(2):301-311
[10] TAKAI S, KUMAR R. Distributed failure prognosis of discrete event systems with bounded-delay communications[J]. IEEE Transactions on Automatic Control, 2012, 57(5):1259-1265
[11] KHOUMSI A, CHAKIB H. Conjunctive and disjunctive architectures for decentralized prognosis of failures in discrete-event systems[J]. IEEE Transactions on Automation Science & Engineering, 2012, 9(2):412-417
[12] NUÑO-SÁNCHEZ S A, RAMÍREZ-TREVIÑO A, RUIZ-LEÓN J. Structural sequence detectability in free choice interpreted petri nets[J]. IEEE Transactions on Automatic Control, 2016, 61(1):198-203
[13] SHU S, HUANG Z, LIN F. Online sensor activation for detectability of discrete event systems[J]. IEEE Trans-actions on Automation Science & Engineering, 2013, 10(2):457-461
[14] LIU F. Decentralized predictability of discrete event systems[C]//201729th Chinese Control and Decision Conference. Chongqing:Control and Decision, 2017:2914-2919.
[15] LIU F, YANG P. Verification for the predictability of decentralized discrete event systems with a polynomial complexity[C]//201736th Chinese Control Conference. Dalian:Technical Committee on Control Theory, 2017:2367-2372.
[16] CASSANDRAS C G, LAFORTUNE S. Introduction to discrete event systems[M]. New York:Springer, 2008.
[17] THORSLEY D, TENEKETZIS D. Diagnosability of stochastic discrete-event systems[J]. IEEE Transactions on Automatic Control, 2005, 50(4):476-492
[18] LIU F, QIU D, XING H, et al. Decentralized diagnosis of stochastic discrete event systems[J]. IEEE Transactions on Automatic Control, 2008, 53(2):535-546
[19] LIU F, QIU D. Safe diagnosability of stochastic discrete event systems[J]. IEEE Transactions on Automatic Control, 2008, 53(5):1291-1296
[20] 常明, 董炜, 吉吟东, 等. 基于随机自动机状态估计的故障预测[J]. 清华大学学报(自然科学版), 2013, 53(11):1623-1628 CHANG M, DONG W, JI Y D, et al. State estimation based fault prediction for stochastic automatons[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(11):1623-1628
[21] CHEN J, KUMAR R. Stochastic failure prognosability of discrete event systems[J]. IEEE Transactions on Automatic Control, 2015, 60(6):1570-1581
[1] 吕舒园, 刘富春, 赵锐, 邓秀勤, 崔洪刚. 分布式离散事件系统的模式故障预测研究[J]. 广东工业大学学报, 2021, 38(01): 54-63.
[2] 石聪聪, 刘富春. 模糊离散事件系统基于模式的故障诊断[J]. 广东工业大学学报, 2019, 36(01): 35-41.
[3] 马留洋, 孟安波, 葛佳菲. 基于纵横交叉算法优化BP神经网络的风机齿轮箱故障诊断方法[J]. 广东工业大学学报, 2018, 35(02): 57-62.
[4] 张家宾, 张金春, 李日华, 李超亚. 基于可拓学的故障诊断及预防方法研究[J]. 广东工业大学学报, 2015, 32(1): 11-15.
[5] 龙祥; 钱志博; . 模糊理论在设备故障诊断神经网络中的典型应用[J]. 广东工业大学学报, 2006, 23(4): 60-63.
[6] 杨春燕; 何斌; . 系统故障的可拓诊断方法[J]. 广东工业大学学报, 1998, 15(1): 100-105.
[7] 秦叶; 原锡光; 冯文贤; 陈文戈; 郑佑廉; . 小波分析与机械故障诊断[J]. 广东工业大学学报, 1997, 14(2): 68-72.
[8] 秦叶; 陈文戈; 原锡光; 曾焕浪; 郑佑濂; . 大型机组振动信号的采集与典型故障的诊断[J]. 广东工业大学学报, 1997, 14(1): 75-79.
[9] 郑佑濂; 陈文戈. 大型机组运行状态的振动特征与模糊识别[J]. 广东工业大学学报, 1995, 12(S1): 53-57.
[10] 肖鸿展; 蔡千;. 模拟电路故障诊断中的故障分离[J]. 广东工业大学学报, 1994, 11(1): 71-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!