广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (06): 37-42.doi: 10.12052/gdutxb.180094

• • 上一篇    下一篇

基于无线供电的非正交多址接入网络的鲁棒资源分配研究

崔苗1, 庞浩然1, 张广驰1, 刘怡俊1, 邹为民2   

  1. 1. 广东工业大学 信息工程学院, 广东 广州 510006;
    2. 广东创锐电子技术股份有限公司, 广东 东莞 523039
  • 收稿日期:2018-07-02 出版日期:2018-11-23 发布日期:2018-11-05
  • 通信作者: 张广驰(1982-),副教授,主要研究方向为电子信息与无线通信技术.E-mail:gczhang@gdut.edu.cn E-mail:gczhang@gdut.edu.cn
  • 作者简介:崔苗(1978-),讲师,博士,主要研究方向为电子信息与无线通信技术.E-mail:cuimiao@gdut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61571138);广东省科技计划项目(2017B090909006,2016B090904001,2016B090918031);广州市科技计划项目(201803030028)

Robust Resource Allocation for Wireless Powered Non-orthogonal Multiple Access Net-works

Cui Miao1, Pang Hao-ran1, Zhang Guang-chi1, Liu Yi-jun1, Zou Wei-min2   

  1. 1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangdong Chuangrui Electronic Technology Co., ltd, Dongguan 523039, China
  • Received:2018-07-02 Online:2018-11-23 Published:2018-11-05

摘要: 无线能量传输是解决无线网络中节点设备能量短缺问题的新技术,非正交多址接入是缓解无线网络频谱紧缺难题和满足大规模节点接入需求的新型多址接入技术. 将两者相结合不仅可以缓解节点设备电池能量不足、需要频繁更换电池的问题,还可以提高系统的频谱效率,满足大规模节点接入的需求. 本文考虑基于无线供电的非正交多址接入网络,其中包含一个多天线的能量基站、多个单天线用户和一个单天线信息接收机. 在该网络中,下行链路和上行链路分别表示从能量基站到用户和从用户到信息接收机的物理信道. 在下行链路中,能量基站通过无线能量传输给多个用户提供可靠的能量;在上行链路中,用户使用收集到的能量并基于非正交多址接入技术发送信息给信息接收机. 在系统的下行链路信道状态信息不完美的实际情况下,设计鲁棒资源分配策略,联合设计能量基站的波束赋形向量、用户的发射功率和上下行链路间的时间分配,最大化系统的吞吐量. 仿真结果表明,所提鲁棒设计算法的吞吐量性能明显优于不具有鲁棒性的资源分配算法.

关键词: 非正交多址接入, 鲁棒性, 无线能量传输, 时间和功率分配

Abstract: The wireless power transfer (WPT) is a controllable and promising way to solve the energy scarcity problem of the devices in wireless networks. The non-orthogonal multiple access (NOMA) scheme is a new multiple access technique, which has been proposed to provide higher spectral efficiency (SE) and support massive user accesses. A wireless powered NOMA network consisting of one multiple-antenna power station, multiple single-antenna users and one single-antenna information receiver is considered. In the downlink, the power station transfers wireless energy to the users, while in the uplink, the users transmit their information to the information receiver in the NOMA manner. A practical scenario where the power station knows imperfect channel state information (CSI) of the downlink channel is viewed, and a robust resource allocation algorithm is proposed to jointly optimize the beamforming of the power station, the transmit powers of the users, and the time lengths of the downlink and uplink in order to maximize the throughput of the system. Simulation results show that the proposed robust design algorithm achieves significantly higher throughput than the non-robust benchmark scheme.

Key words: non-orthogonal multiple access(NOMA), robust, wireless power transfer(WPT), time and power allocation

中图分类号: 

  • TN929.5
[1] LU X, WANG P, NIYATO D, et al. Wireless networks with RF energy harvesting:A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2017, 17(2):757-789
[2] VARSHNEY L R. Transporting information and energy simultaneously[C]//IEEE International Symposium on Information Theory. Toronto:IEEE, 2008:1612-1616.
[3] KHANDAKER M R A, WONG K K. SWIPT in MISO multicasting systems[J]. IEEE Wireless Communications Letters, 2014, 3(3):277-280
[4] ZHANG R, HO C K. MIMO Broadcasting for simultaneous wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2013, 12(5):1989-2001
[5] ZHANG G, LI X, CUI M, et al. Signal and artificial noise beamforming for secure simultaneous wireless information and power transfer multiple-input multiple-output relaying systems[J]. IET Communications, 2016, 10(7):796-804
[6] ZHOU X, ZHANG R, HO C K. Wireless infor-mation and power transfer:Architecture design and rate-energy tradeoff[J]. IEEE Transactions on Communications, 2013, 61(11):4754-4767
[7] BI S, HO C K, ZHANG R. Wireless powered communication:Opportunities and challenges[J]. IEEE Communications Magazine, 2014, 53(4):117-125
[8] ZHANG G, XU J, WU Q, et al. Wireless powered cooperative jamming for secure OFDM system[J]. IEEE Transactions on Vehicular Technology, 2018, 99(3):1405-1421
[9] JU H, ZHANG R. Throughput maximization in wireless powered communication networks[J]. IEEE Transactions on Wireless Communications, 2013, 13(1):418-428
[10] DIAMANTOULAKIS P D, PAPPI K N, DINGZ, et al. Wireless-powered communications with non-Orthogonal multiple access[J]. IEEE Transactions on Wireless Communications, 2016, 15(12):8422-8436
[11] ZHANG G, LI Q, ZHANG Q, et al. Signal-to-interference-plus-noise ratio-based multi-relay beamforming for multi-user multiple-input multiple-output cognitive relay networks with interference from primary network[J]. IET Commu-nications, 2015, 9(2):227-238
[12] WAN L, ZHANG G, CUI M, et al. Proactive eavesdropping via pilot contamination and jam-ming[J]. Wireless Personal Communications, 2018, 99(3):1405-1421
[13] SUN Q, ZHU G, SHEN C, et al. Joint Beamforming design and time allocation for wireless powered communication networks[J]. IEEE Commu-nications Letters, 2014, 18(10):1783-1786
[14] PANG H, ZHANG G, WU Q, et al. Throughput maximization for wireless powered non-orthogonal multiple access networks with multiple antennas[C]//Asia-pacific Conference on Communications.[S.l.], 2017:1-5.
[15] HUANG Y, LI Q, MA W K, et al. Robust multicast beamforming for spectrum sharing-based cognitive radios[J]. IEEE Transactions on Signal Processing, 2012, 60(1):527-533
[16] WANG K Y, CHANG T H, MA W K, et al. Probabilistic SINR constrained robust transmit beamforming:A bernstein-type inequality based conservative approach[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Prague:IEEE, 2011:3080-3083.
[17] ZHENG G, MA S, WO K K, et al. Robust beamforming in cognitive radio[J]. IEEE Transactions on Wireless Communications, 2010, 9(2):570-576
[18] ZHANG G, LI X, CUI M, et al. Transceiver design for cognitive multi-user MIMO multi-relay networks using imperfect CSI[J]. AEUE-International Journal of Electronics and Communications, 2016, 70(5):544-557
[19] CUI M, ZHANG G, WU Q, et al. Robust trajectory and transmit power design for secure UAV communications[J]. IEEE Transactions on Vehicular Technology, 2018, arXiv:1806.06396[CS.IT].
[20] BEN-TA A, GHAOUI L E, NEMIROVSKI A. Robust optimization[M]. USA, New Jersey:Princeton University Press, 2009.
[21] BECHAR I. A Bernstein-type inequality for stochastic processes of quadratic forms of Gaussian variables[EB/OL].[2018-05-06]. http://cn.arxiv.org/abs/0909.3595.
[22] BOYD S, VANDENBERGHE L. Convex optimization[M]. UK, Cambridge:Cambridge University Press, 2004.
[23] WANG K Y, SO M C, CHANG T H, et al. Outage constrained robust transmit optimization for multiuser MISO downlinks:tractable approximations by conic optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(21):5690-5705
[1] 谭艺枝, 陈宝仁. 无线携能传输协同中继非正交多址接入系统的速率优化设计[J]. 广东工业大学学报, 2020, 37(01): 81-86.
[2] 张淼, 郭兴屹, 张兴旺. 基于状态反馈的单相LCL逆变器研究[J]. 广东工业大学学报, 2018, 35(05): 60-64,69.
[3] 何丽君, 张广驰, 黄高飞, 万林青, 崔苗, 刘怡俊, 林凡. 无线携能OFDM中继系统的联合资源分配研究[J]. 广东工业大学学报, 2018, 35(01): 29-34.
[4] 梁瑞时, 金朝永. 扰动奇异时滞大系统鲁棒镇定[J]. 广东工业大学学报, 2015, 32(1): 133-137.
[5] 王汝凉; 胡刚; 刘永清; . 滞后离散扰动奇异系统特征值区域的鲁棒性[J]. 广东工业大学学报, 2000, 17(3): 40-43.
[6] 王钦若; 李西成; 李宪光; . 推理控制在大型冷藏库中的应用[J]. 广东工业大学学报, 1998, 15(4): 3-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!