广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (02): 87-93.doi: 10.12052/gdutxb.190050
王丹荣, 莫艳
Wang Dan-rong, Mo Yan
摘要: 支持向量机(Support Vector Machines,SVMs)在逼近问题的求解上展现出了良好的有效性和可行性,而微分方程求解问题是许多学者研究的热门课题。其中,离散微分方程及其逆问题的求解具有十分重要的意义。本文将支持向量机、Tikhonov正则化和再生核理论相结合,提出一种求解离散线性微分方程及其逆问题的方法。该方法适用于一般的离散线性微分方程及其逆问题的求解,能够得到具有解析表达式的稀疏解,便于后续应用。实验表明,所提出的方法是有效的。
中图分类号:
[1] LAGARIS I E, LIKAS A, FOTIADIS D I. Artificial neural networks for solving ordinary and partial differential equations[J]. IEEE Transactions on Neural Networks and Learning Systems, 1998, 9(5):987-1000 [2] MEADE A J J, FERNANDEZ A A. The numerical solution of linear ordinary differential equations by feedforward neural networks[J]. Mathematical & Computer Modelling Math, 1994, 19(12):1-25 [3] VAPNIK V. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag, 1995. [4] AHMED S, KHALID M, AKRAM U. A method for short-term wind speed time series forecasting using support vector machine regression model[C]//20176th International Conference on Clean Electrical Power. Santa Margherita Ligure:IEEE, 2017:190-195. [5] WANG X D. Forecasting short-term wind speed using support vector machine with particle swarm optimization[C]//2017 International Conference on Sensing, Diagnostics, Prognostics and Control. Shanghai:IEEE, 2017:241-245. [6] PAN J, YANG B, CAI S B, et al. Finger motion pattern recognition based on sEMG support vector machine[C]//2017 IEEE International Conference on Cyborg & Bionic Systems. Beijing:IEEE, 2017. [7] WU W, ZHOU H. Data-Driven diagnosis of cervical cancer with support vector machine-based approaches[J]. IEEE Access, 2017, 5:25189-25195 [8] POLAT H, DANAEI M H, CETIN A. Diagnosis of chronic kidney disease based on support vector machine by feature selection methods[J]. Journal of Medical Systems, 2017, 41(4):55 [9] TAIE S A, GHONAIM W. Title CSO-based algorithm with support vector machine for brain tumor's disease diagnosis[C]//2017 IEEE International Conference on Pervasive Computing & Communications Workshops. Kona:IEEE, 2017. [10] MO Y, QIAN T. Support vector machine adapted Tikhonov regularization method to solve Dirichlet problem[J]. Applied Mathematics and Computation, 2014, 245:509-519 [11] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3):293-300 [12] MEHRKANOON S, FALCK T, SUYKENS J A K. Approximate solutions to ordinary differential equations using least squares support vector machines[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(9):1356-1367 [13] ZHOU S S, WANG B J, CHEN L. High precision approximate analytical solutions to ODE using LS-SVM[J]. The Journal of China Universities of Posts and Telecommunications, 2018, 25(4):94-102 [14] CASTRO L P, SAITOH S, SAWANO Y, et al. Discrete linear differential equations[J]. International Mathematical Journal of Analysis & Its Applications, 2012, 32(3):181-191 [15] MATSUURA T, SAITOH S, TRONG D D. Numerical solutions of the Poisson equation[J]. Applicable Analysis, 2004, 83(10):1037-1051 [16] SAITOH S. Integral Transforms, Reproducing Kernels and their applications[J]. Journal of Experimental Medicine, 1997, 188(1):39-48 [17] SAITOH S. Approximate real inversion formulas of the gaussian convolution[J]. Applicable Analysis, 2004, 83(7):727-733 [18] 邓乃扬, 田英杰. 支持向量机:理论、算法与拓展[M]. 北京:科学出版社, 2009. [19] BOYD S, VANDENBERGHE L. Convex Optimization[M]. Cambridge University Press, 2004. [20] RIEGER C, ZWICKNAGL B. Deterministic error analysis of support vector regression and related regularized kernel methods[J]. Journal of Machine Learning Research, 2006, 10(5):2115-2132 |
[1] | 陈友鹏, 陈璟华. 基于鲸鱼优化参数的最小二乘支持向量机短期负荷预测方法[J]. 广东工业大学学报, 2020, 37(03): 75-81. |
[2] | 陈培文, 傅秀芬. 采用SVM方法的文本情感极性分类研究[J]. 广东工业大学学报, 2014, 31(3): 95-101. |
[3] | 胡俊, 滕少华, 张巍, 刘冬宁. 支持向量机与哈夫曼树实现多分类的研究[J]. 广东工业大学学报, 2014, 31(2): 36-42. |
[4] | 夏琴晔, 杨宜民. 基于biSCAN和SVM的机器人目标识别新算法研究[J]. 广东工业大学学报, 2013, 30(4): 65-69. |
[5] | 朱燕飞; 谭洪舟; 章云; . 基于LS-SVM的非线性系统盲辨识[J]. 广东工业大学学报, 2007, 24(2): 76-79. |
[6] | 邹自德; 顾明; . oeplitz算子和Hankel算子之紧性研究[J]. 广东工业大学学报, 1996, 13(4): 22-. |
|