广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (04): 65-68.doi: 10.12052/gdutxb.190122
邱正添, 乔守红
Qiu Zheng-tian, Qiao Shou-hong
摘要: 令G为有限群, H是G的子群。称H是G的S-半置换子群, 如果对G的任意Sylow p-子群${G_p}$, 满足($p$, $\left| H \right|$)=1, 都有$H{G_p} = {G_p}H$。本文主要探讨子群的S-半置换性对有限群的$p$-超可解性的影响, 给出了一些关于有限群的$p$-超可解性的判定条件, 并对已知的结果进行了推广。
中图分类号:
[1] HUPPERT B. Endliche gruppen I [M]. Berlin: Springer-Verlag, 1967. [2] WANG L F, WANG Y M. On s-semipermutable maximal and minimal subgroups of Sylow p-Subgroups of finite groups [J]. Communications in Algebra, 2006, 34(1): 143-149 [3] SKIBA A N. On weakly s-permutable subgroups of finite groups [J]. Journal of Algebra, 2007, 315(1): 192-209 [4] GUO X Y, ZHANG B R. Conditions on p-Subgroups implying p-Supersolvability [J]. Journal of Algebra and Its Applications, 2017, 16(10): 1750196 [5] LI Y M, QIAO S H, SU N, et al. On weakly s-semipermutable subgroups of finite groups [J]. Journal of Algebra, 2012, 371: 250-261 [6] BERKOVICH Y, ISAACS I M. p-Supersolvability and actions on p-groups stabilizing certain subgroups [J]. Journal of Algebra, 2014, 414: 82-94 [7] MIAO L Y, LI Y M. Some criteria for p-Supersolvability of a finite group [J]. Communications in Mathematics and Statistics, 2017, 5(3): 339-348 [8] ZHANG B R, GUO X Y. A note on the embedding properties of p-Subgroups in finite groups [J]. Hacettepe Journal of Mathematics and Statistics, 2019, 48(1): 102-111 [9] YU H R. Some sufficient and necessary conditions for p-Supersolvablity and p-nilpotence of a finite group [J]. Journal of Algebra and Its Applications, 2017, 16(2): 1750052 [10] ISAACS I M. Semipermutable π-subgroups [J]. Archiv der Mathematik, 2014, 102(1): 1-6 [11] SHEN J X, QIAO S H. p-Supersoluble hypercenter and s-semipermutability of subgroups of a finite group [J]. Bulletin of the Iranian Mathematical Society, 2018, 44(5): 1185-1193 |
[1] | 谭立辉,乔守红. 具有c1-可补子群的有限群结构分析[J]. 广东工业大学学报, 2012, 29(3): 46-48. |
[2] | 乔守红, 郭大昌. 具有几乎c-置换子群的有限群[J]. 广东工业大学学报, 2011, 28(1): 54-57. |
|