广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (02): 66-72.doi: 10.12052/gdutxb.200121

• 综合研究 • 上一篇    下一篇

镧系掺杂ZnO的电子结构和光学性质

白玲玲1, 林志萍1, 董华锋1, 吴福根2   

  1. 1. 广东工业大学 物理与光电工程学院 广东 广州 510006;
    2. 广东工业大学 材料与能源学院 广东 广州 510006
  • 收稿日期:2020-09-22 出版日期:2021-03-10 发布日期:2021-01-13
  • 通信作者: 林志萍(1973-),女,副教授,博士,主要研究方向为功能材料的制备和性能研究,E-mail:zhipinglphy@gdut.edu.cn E-mail:zhipinglphy@gdut.edu.cn
  • 作者简介:白玲玲(1991-),女,博士,主要研究方向为第一性原理计算在新型材料中的应用
  • 基金资助:
    国家自然科学基金资助项目(11604056);广东省自然科学基金资助项目(2018A030313272)

Electronic Structure and Optical Properties of Lanthanide Doping ZnO

Bai Ling-ling1, Lin Zhi-ping1, Dong Hua-feng1, Wu Fu-gen2   

  1. 1. School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-09-22 Online:2021-03-10 Published:2021-01-13

摘要: 通过第一性原理计算研究了镧系元素掺杂ZnO的电子结构和光学性质。结果表明: 单层ZnO中掺杂形成能低于体ZnO的形成能。较Zn原子而言, 具有更大原子半径的镧系原子的引入使得掺杂后的ZnO的晶格常数变大。镧系元素的4f电子与O的2s和Zn的3p、4s轨道电子的杂化使非磁性的ZnO在掺入单个镧系原子后呈现出一定的铁磁性。镧系元素掺杂ZnO使体系的价带和导带之间出现了杂质能级, 这使带隙减小从而提高了ZnO的导电能力; Eu/La/Ce掺杂ZnO的光吸收谱在近红外区域出现了新的吸收峰。随Eu/Ce-Oi双缺陷的形成, 氧间隙明显地改变了ZnO的光学性质。

关键词: 镧系掺杂ZnO, 电子结构, 光学性质, 缺陷对

Abstract: The electronic structure and optical properties of lanthanide doping ZnO are investigated by first-principles calculation. The formation energy of lanthanide doping in SL(single-layer)-ZnO structure that is lower than in bulk-ZnO structure. The magnetism of ZnO will change along with single lanthanide atom doping from nonmagnetic to ferromagnetic, which roots in orbital hybridization of 4f of lanthanide, O-2p and Zn-3p and-4s. Impurities level formed in CBM (conduction-band minimum) or VBM (valence-band maximum) along with lanthanide doped will reduce the band gap and improve the conductivity of materials. For Eu/La/Ce doping ZnO, new absorbing peak will be formed in infrared regions, and Eu/Ce-Oi double defects will obviously improve its optical properties.

Key words: lanthanide doping ZnO, electronic structure, optical properties, defect pair

中图分类号: 

  • O469
[1] BAGNALL D M, CHEN Y F, ZHU Z, et al. Optically pumped lasing of ZnO at room temperature [J]. Applied Physics Letters, 1997, 70(17): 2230-2232.
[2] ÖZGÜR Ü, HOFSTETTER D, MORKOC H. ZnO Devices and applications: a review of current status and future prospects [J]. Institute of Electrical and Electronics Engineers, 2010, 98(7): 1255-1268.
[3] TSUKAZAKI A, OHTOMO A, ONUMA T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nature Materials, 2005, 4(1): 42-46.
[4] 曹明澈, 李大光, 郭清泉, 等. 流变相反应制备纳米ZnO及其表征[J]. 广东工业大学学报, 2007, 24(4): 6-9.
CAO M C, LI D G, GUO Q Q, et al. Synthesis and characterization of nanometer ZnO with rheological phase reaction [J]. Journal of Guangdong University of Technology, 2007, 24(4): 6-9.
[5] SAMADI M, ZIRAK M, NASERI A, et al. Recent progress on doped ZnO nanostructures for visible-light photocatalysis[J]. Thin Solid Films, 2016, 605: 2-19.
[6] BELTRÁN J J, BARREROA C A, PUNNOOSE A. Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles [J]. Physical Chemistry Chemical Physics, 2015, 17(23): 15284-15296.
[7] LEE J J, XING G Z, YI J B, et al. Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements cooping [J]. Applied Physics Letters, 2014, 104(1): 1-5.
[8] AGARWAL L, NAIK B N, TRIPATHI S. Highly reflective Er-doped ZnO thin-film coating for application in a UV optical ring resonator [J]. Nanotechnology, 2017, 28(46): 1-11.
[9] SAIF M, HAFEZ HA, NABEEL A I. Photo-induced self-cleaning and sterilizing activity of Sm3+ doped ZnO nanomaterials [J]. Chemosphere, 2013, 90(2): 840-847.
[10] PASCARIU P, HOMOCINAU M, COJOCARU C, et al. Preparation of La doped ZnO ceramic nanostructures by electrospinning-calcination method: effect of La3+ doping on optical and photocatalytic properties [J]. Applied Surface Science, 2019, 476: 16-27.
[11] XIAO L Y, WANG R, SUN Z S, et al. Enhanced red upconversion emission of Er3+-doped ZnO by post-annealing [J]. Journal of Luminescence, 2017, 192: 668-674.
[12] RHOUMA F I H, BELKHIRIA F, BOUZAIENE E, et al. The structure and photoluminescence of a ZnO phosphor synthesized by the sol gel method under praseodymium doping [J]. RSC Advances, 2019, 9(9): 5206-5217.
[13] JANOTTI A, VAN DE WALLE C G. Native point defects in ZnO[J]. Physical Review B, 2007, 76: 1-22.
[14] BAI L L, LIN Z P, WEN M R, et al. Vacancies inducing electronic and optical properties in 2D ZnO: Be/Mg [J]. Physica B: Condensed Matter, 2019, 555: 47-56.
[15] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169-11186.
[16] BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953-17979.
[17] KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals [J]. Physical Review B, 1993, 48(17): 13115-13118.
[18] PIYANZINA I I, KOPP T, LYSOGORKIY Y V, et al. Electronic properties of LaAlO3/SrTiO3 n-type interfaces: a GGA+U study [J]. Journal of Physics: Condensed Matter, 2017, 29(9): 1-7.
[19] LOSCHEN C, CARRASCO J, NEYMAN K M, et al. First-principles LDA plus U and GGA plus U study of cerium oxides: Dependence on the effective U parameter [J]. Physical Review B, 2007, 75(3): 1-8.
[20] GHOSH D B, DE M, DE S K. Electronic structure and magneto-optical properties of magnetic semiconductors: Europium monochalcogenides [J]. Physical Review B, 2004, 70(11): 1-7.
[21] KNÍŽEK K, HEJTMÁNEK J, NOVÁK P, et al. Charge transfer, valence, and the metal-insulator transition in Pr0.5Ca0.5CoO3 [J]. Physical Review B, 2010, 81(15): 1-5.
[22] ZHAO Y J, ZUNGER A. Site preference for Mn substitution in spintronic CuMIIIX2VI chalcopyrite semiconductors [J]. Physical Review B, 2004, 69(7): 1-7.
[23] EHRENREICH H, COHEN M H. Self-consistent field approach to the many-electron problem [J]. Physical Review, 1959, 115(4): 786-790.
[24] TOLL J S. Causality and the dispersion relation: logical foundations [J]. Physical Review, 1956, 104(6): 1760-1770.
[25] FOX M. Optical Properties of Solids[M]. Great Britain: Oxford University Press, 2001: 5-8.
[26] MANIKANDAN A, MANIKANDAN E, MEENATCHI B, et al. Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies [J]. Journal of Alloys and Compounds, 2017, 723: 1155-1161.
[27] BASMA H, RAHAL H T, Al-MOKDAD F, et al. Unusual magnetic behavior of nanosized ZnO doped with Mo6+ [J]. Materials Research Express, 2019, 6(7): 1-11.
[28] LI C, HOU Q Y, XU Z C, et al. Magnetic properties of La-Doped ZnO(0001)-Zn polar surface with and without vacancies: a first-principle study [J]. Journal of Superconductivity and Novel Magnetism, 2018, 31(9): 2897-2905.
[29] TAN C L, XU D S, ZHANG K, et al. Electronic and magnetic properties of rare-earth metals doped ZnO monolayer [J]. Journal of Nanomaterials, 2015, 2015: 1-8.
[30] ZHANG Y G, ZHANG G B, WANG Y X, et al. First-principles study of the electronic structure and optical properties of Ce-doped ZnO [J]. Journal of Applied Physics, 2011, 109(6): 1-7.
[31] FIFERE N, AIRINEI A, TIMPU D, et al. New insights into structural and magnetic properties of Ce doped ZnO nanoparticles [J]. Journal of Alloys and Compounds, 2018, 757: 60-69.
[32] AMIN S A, SEDKY A. On the correlation between electrical, optical and magnetic properties of Zn1-xPrxO nanoparticles [J]. Materials Research Express, 2019, 6(6): 1-16.
[33] QU L F, HOU Q Y, FANG J X, et al. Effects of Eu doping and O vacancy on the magnetic and optical properties of ZnO [J]. Physica B: Physics of Condensed Matter, 2018, 530: 133-141.
[34] DENG S H, DUAN M Y, XU M, et al. Effect of La doping on the electronic structure and optical properties of ZnO [J]. Physica B, 2011, 406(11): 2314-2318.
[35] WEN J Q, ZHANG J M, QIU Z C, et al. The investigation of Ce doped ZnO crystal: the electronic, optical and magnetic properties [J]. Physica B: Condensed Matter, 2018, 534: 44-50.
[36] PAL P P, MANAM J. Enhanced luminescence of ZnO: RE3+ (RE=Eu, Tb) nanorods by Li+ doping and calculations of kinetic parameters[J]. Journal of Luminescence, 2014, 145: 340-350.
[37] YANG Y H, FEBG Y, ZHU H G, et al. Growth, structure, and cathodeluminescence of Eu-doped ZnO nanowires prepared by high-temperature and high-pressure pulsed-laser deposition [J]. Journal of Applied Physics, 2010, 107(5): 1-4.
[38] WENDLER E, BILANI O, GÄRTNER K. et al Radiation damage in ZnO ion implanted at 15 K [J]. Nuclear Instruments and Methods in Physics Research B, 2009, 267(16): 2708-2711.
[39] WANG J, ZHOU M J, HARK S K, et al. Local electronic structure and luminescence properties of Er doped ZnO nanowires [J]. Applied Physics Letters, 2006, 89(22): 1-3.
[40] GEBURT S, LORKE M, ROSA A LD, et al. Intense intrashell luminescence of Eu-doped single ZnO nanowires at room temperature by implantation created Eu-Oi complexes [J]. Nano Letters, 2014, 14(8): 4523-4528.
[41] WU M Y, SUN D, TAN C L, et al. Al-doped ZnO monolayer as a promising transparent electrode material: a first-principles study [J]. Materials, 2017, 10(4): 1-14.
[42] LI J R, ZHANG Z, LANG J H, et al. Tuning red emission and photocatalytic properties of highly active ZnO nanosheets by Eu addition [J]. Journal of Luminescence, 2018, 204: 573-580.
[1] 黄广, 刘秋香. Ba(Til-xSnx)O3陶瓷的高温介电弛豫现象与阻抗研究[J]. 广东工业大学学报, 2017, 34(06): 88-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!