广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (02): 62-65.doi: 10.12052/gdutxb.200125
岑达康, 汪志波
Cen Da-kang, Wang Zhi-bo
摘要: 讨论了一类分数阶捕食者—食饵模型的变分迭代方法(Variational Iteration Method,VIM)。对该模型进行积分变换,得到与之等价的耦合积分微分方程组。根据变分原理,得出拉格朗日乘子,构建VIM求解格式,并对求解格式的收敛性进行分析。最后进行了相关的数值模拟,模拟结果验证了该方法的可行性和有效性。
中图分类号:
[1] EAB C H, LIM S C. Fractional Langevin equations of distributed order [J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2011, 83(3): 031136. [2] 赵天霄, 朱惠延, 刘岩柏, 等. 具水平抑制及母婴垂直传播的分数阶HIV/AIDS传染病模型的稳定性研究 [J]. 生物数学学报, 2018, 33(2): 204-210. ZHAO T X, ZHU H Y, LIU Y B, et al, A study on stability of fractional HIV/ADIS epidemic model with horizontal inhibition and vertical mother-to-child transmission [J]. Journal of Biomathematics, 2018, 33(2): 204-210. [3] DAS S. Functional fractional calculus [M]. Berlin: Springer, 2011. [4] WANG Z, VONG S. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation [J]. Journal of Computational Physics, 2014, 277: 1-15. [5] 张会琴, 汪志波. 带周期边界的时间分数阶扩散方程的差分格式[J]. 广东工业大学学报, 2019, 36(3): 74-79. ZHANG H Q, WANG Z B. Finite difference schemes for time fractional diffusion equations with periodic boundary conditions [J]. Journal of Guangdong University of Technology, 2019, 36(3): 74-79. [6] HUANG C, STYNES M. Superconvergence of a finite element method for the multi-term time-fractional diffusion problem [J]. Journal of Scientific Computing, 2020, 82(1): 10. [7] ZENG F, LI C, LIU F, et al. The use of finite difference/element approaches for solving the time-fractional subdiffusion equation [J]. SIAM Journal Scientific Computing, 2013, 35(6): A2979-A3000. [8] INOKUTI M, SEKINE H, MURA T. General use of the Lagrange multiplier in nonlinear physics [J]. Variational Methods in the Mechanics of Solids, 1980: 156-162. [9] HE J H. Variational iteration method for delay differential equation [J]. Communications in Nonlinear Science and Numerical Simulation, 1997, 2(4): 235-236. [10] 尹伟石, 张绪财, 徐飞. 利用变分迭代法求Riesz分数阶偏微分方程近似解[J]. 黑龙江大学自然科学学报, 2016, 33(5): 587-591. YIN W S, ZHANG X C, XU F. The approximate solution of Riesz fractional PDEs using variational iteration method [J]. Journal of Natural Science of Heilongjiang University, 2016, 33(5): 587-591. [11] 高秀丽, 胡玉兰, 额尔敦布和. 基于变分迭代法数值模拟两种非线性发展方程的行波解[J]. 内蒙古大学学报(自然科学版), 2018, 49(6): 567-575. GAO X L, HU Y L, EERDUN B. Numerical simulation of travelling wave solutions for mathematical physics equations by variational iteration method [J]. Journal of Inner Mongolia University (Natural Science Edition), 2018, 49(6): 567-575. [12] 姜兆敏, 黄金城, 曹毅, 等. 利用变分迭代法解二阶常微分方程组边值问题 [J]. 数学的实践与认识, 2014, 44(10) : 289-293. JIANG Z M, HUANG J C, CAO Y, et al, Numerical solutions of system of second-order boundary value problems using variational iteration method [J]. Mathematics in Practice and Theory, 2014, 44(10): 289-293. [13] EL-SHAHED M, AHMED A M, ABDELSTAR I M E. Fractional order model in generalist Predator-Prey dynamics. [J]. International Journal of Mathematics and its Applications, 2016, 4(3-A): 19-28. [14] 王虎, 田晶磊, 孙玉琴, 等. 具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析[J]. 应用数学学报, 2018, 41(1): 27-42. WANG H, TIAN J L, SUN Y Q, et al. Stability analysis of fractional stage-structured Predator-Prey system with delay [J]. Acta Mathematicae Applicatae Sinica, 2018, 41(1): 27-42. [15] 汪维刚, 石兰芳, 莫嘉琪. 一类生态模型的近似解析解[J]. 武汉大学学报(理学版), 2015, 61(4): 315-318. WANG W G, SHI L F, MO J Q. The approximate analytic solution of a class of ecological model [J]. Journal of Wuhan University (Natural Science Edition), 2015, 61(4): 315-318. |
[1] | 张会琴, 汪志波. 带周期边界的时间分数阶扩散方程的差分格式[J]. 广东工业大学学报, 2019, 36(03): 74-79. |
[2] | 莫浩艺; . 解一类广义线性互补问题的神经网络模型[J]. 广东工业大学学报, 2007, 24(2): 20-23. |
[3] | 惠阿丽; 郑建明; 孙瑜; . 非线性系统闭环PD型迭代学习收敛性分析[J]. 广东工业大学学报, 2006, 23(2): 42-47. |
[4] | 肖胜中; 古伟清; . 求解带不可微项方程的Newton-Moser迭代的收敛性[J]. 广东工业大学学报, 2000, 17(1): 88-91. |
|