广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (02): 62-65.doi: 10.12052/gdutxb.200125

• 综合研究 • 上一篇    下一篇

分数阶捕食者—食饵模型的变分迭代法

岑达康, 汪志波   

  1. 广东工业大学 数学与统计学院, 广东 广州 510520
  • 收稿日期:2020-09-22 出版日期:2022-03-10 发布日期:2022-04-02
  • 通信作者: 汪志波(1987-),男,副教授,主要研究方向为微分方程数值解,E-mail:wzbmath@gdut.edu.cn
  • 作者简介:岑达康(1997-),男,硕士研究生,主要研究方向为微分方程数值解
  • 基金资助:
    国家自然科学基金资助项目(11701103);广东省珠江人才计划引进高层次人才项目(2017GC010379);广东省自然科学基金资助项目(2019A1515010876);广东省计算科学重点实验室开放基金(2021023);广州市科技计划一般项目(201904010341,202102020704)

A Variational Iteration Method for Fractional Predator-Prey Model

Cen Da-kang, Wang Zhi-bo   

  1. School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2020-09-22 Online:2022-03-10 Published:2022-04-02

摘要: 讨论了一类分数阶捕食者—食饵模型的变分迭代方法(Variational Iteration Method,VIM)。对该模型进行积分变换,得到与之等价的耦合积分微分方程组。根据变分原理,得出拉格朗日乘子,构建VIM求解格式,并对求解格式的收敛性进行分析。最后进行了相关的数值模拟,模拟结果验证了该方法的可行性和有效性。

关键词: 分数阶捕食者?食饵模型, 变分迭代方法, 收敛性

Abstract: A variational iteration method (VIM) for a class of fractional predator-prey model is studied. A pair equivalent coupled integro-differential equation to the model is obtained by means of integral transformation. According to variational theory, the Lagrange multiplier is calculated and the VIM scheme is constructed. Finally, a convergence analysis of the scheme is given and a numerical simulation is carried out.The results verify the feasibility and effectiveness of the method.

Key words: fractional predator-prey model, variational iteration method, convergence

中图分类号: 

  • O241.8
[1] EAB C H, LIM S C. Fractional Langevin equations of distributed order [J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2011, 83(3): 031136.
[2] 赵天霄, 朱惠延, 刘岩柏, 等. 具水平抑制及母婴垂直传播的分数阶HIV/AIDS传染病模型的稳定性研究 [J]. 生物数学学报, 2018, 33(2): 204-210.
ZHAO T X, ZHU H Y, LIU Y B, et al, A study on stability of fractional HIV/ADIS epidemic model with horizontal inhibition and vertical mother-to-child transmission [J]. Journal of Biomathematics, 2018, 33(2): 204-210.
[3] DAS S. Functional fractional calculus [M]. Berlin: Springer, 2011.
[4] WANG Z, VONG S. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation [J]. Journal of Computational Physics, 2014, 277: 1-15.
[5] 张会琴, 汪志波. 带周期边界的时间分数阶扩散方程的差分格式[J]. 广东工业大学学报, 2019, 36(3): 74-79.
ZHANG H Q, WANG Z B. Finite difference schemes for time fractional diffusion equations with periodic boundary conditions [J]. Journal of Guangdong University of Technology, 2019, 36(3): 74-79.
[6] HUANG C, STYNES M. Superconvergence of a finite element method for the multi-term time-fractional diffusion problem [J]. Journal of Scientific Computing, 2020, 82(1): 10.
[7] ZENG F, LI C, LIU F, et al. The use of finite difference/element approaches for solving the time-fractional subdiffusion equation [J]. SIAM Journal Scientific Computing, 2013, 35(6): A2979-A3000.
[8] INOKUTI M, SEKINE H, MURA T. General use of the Lagrange multiplier in nonlinear physics [J]. Variational Methods in the Mechanics of Solids, 1980: 156-162.
[9] HE J H. Variational iteration method for delay differential equation [J]. Communications in Nonlinear Science and Numerical Simulation, 1997, 2(4): 235-236.
[10] 尹伟石, 张绪财, 徐飞. 利用变分迭代法求Riesz分数阶偏微分方程近似解[J]. 黑龙江大学自然科学学报, 2016, 33(5): 587-591.
YIN W S, ZHANG X C, XU F. The approximate solution of Riesz fractional PDEs using variational iteration method [J]. Journal of Natural Science of Heilongjiang University, 2016, 33(5): 587-591.
[11] 高秀丽, 胡玉兰, 额尔敦布和. 基于变分迭代法数值模拟两种非线性发展方程的行波解[J]. 内蒙古大学学报(自然科学版), 2018, 49(6): 567-575.
GAO X L, HU Y L, EERDUN B. Numerical simulation of travelling wave solutions for mathematical physics equations by variational iteration method [J]. Journal of Inner Mongolia University (Natural Science Edition), 2018, 49(6): 567-575.
[12] 姜兆敏, 黄金城, 曹毅, 等. 利用变分迭代法解二阶常微分方程组边值问题 [J]. 数学的实践与认识, 2014, 44(10) : 289-293.
JIANG Z M, HUANG J C, CAO Y, et al, Numerical solutions of system of second-order boundary value problems using variational iteration method [J]. Mathematics in Practice and Theory, 2014, 44(10): 289-293.
[13] EL-SHAHED M, AHMED A M, ABDELSTAR I M E. Fractional order model in generalist Predator-Prey dynamics. [J]. International Journal of Mathematics and its Applications, 2016, 4(3-A): 19-28.
[14] 王虎, 田晶磊, 孙玉琴, 等. 具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析[J]. 应用数学学报, 2018, 41(1): 27-42.
WANG H, TIAN J L, SUN Y Q, et al. Stability analysis of fractional stage-structured Predator-Prey system with delay [J]. Acta Mathematicae Applicatae Sinica, 2018, 41(1): 27-42.
[15] 汪维刚, 石兰芳, 莫嘉琪. 一类生态模型的近似解析解[J]. 武汉大学学报(理学版), 2015, 61(4): 315-318.
WANG W G, SHI L F, MO J Q. The approximate analytic solution of a class of ecological model [J]. Journal of Wuhan University (Natural Science Edition), 2015, 61(4): 315-318.
[1] 张会琴, 汪志波. 带周期边界的时间分数阶扩散方程的差分格式[J]. 广东工业大学学报, 2019, 36(03): 74-79.
[2] 莫浩艺; . 解一类广义线性互补问题的神经网络模型[J]. 广东工业大学学报, 2007, 24(2): 20-23.
[3] 惠阿丽; 郑建明; 孙瑜; . 非线性系统闭环PD型迭代学习收敛性分析[J]. 广东工业大学学报, 2006, 23(2): 42-47.
[4] 肖胜中; 古伟清; . 求解带不可微项方程的Newton-Moser迭代的收敛性[J]. 广东工业大学学报, 2000, 17(1): 88-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!