广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (02): 76-83.doi: 10.12052/gdutxb.200172

• 综合研究 • 上一篇    下一篇

基于绝对节点坐标法的三维柔性旋转梁动力特性分析

张海波, 夏鸿建, 李德源, 刘佳宇   

  1. 广东工业大学 机电工程学院, 广东 广州 510006
  • 收稿日期:2020-12-21 出版日期:2022-03-10 发布日期:2022-04-02
  • 通信作者: 夏鸿建(1978-),男,副教授,主要研究方向为风力机气动与结构, E-mail:hjxia@gdut.edt.cn
  • 作者简介:张海波(1993-),男,硕士研究生,主要研究方向为绝对节点坐标方法的运用
  • 基金资助:
    国家自然科学基金资助项目(51776044);广东省自然科学基金资助项目(2020A1515010844)

A Dynamic Characteristics Analysis of 3D Flexible Rotating Beam Based on Absolute Node Coordinate Formulation

Zhang Hai-bo, Xia Hong-jian, Li De-yuan, Liu Jia-yu   

  1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-12-21 Online:2022-03-10 Published:2022-04-02

摘要: 主要研究了三维柔性旋转梁的动力特性。采用绝对节点坐标法和几何非线性变形假设,基于一般连续介质理论,建立三维柔性梁的非线性动力学模型;基于摄动理论,结合浮点坐标方法,采用线性化技术,建立柔性旋转梁的振动频域分析模型。对柔性梁自由单摆进行时域仿真,并分析了不同转速下三维柔性旋转梁的频域特性。结果表明,随着转速增加梁的动力刚化现象明显,且垂直旋转平面的模态振型和扭转、拉伸振型所对应的频率会逐渐转化为低阶频率,从而影响柔性梁的振动特性。

关键词: 绝对节点坐标法, 动力学方程, 连续介质理论, 模态振型, 三维柔性梁

Abstract: The dynamic characteristics of a three-dimensional(3D) flexible rotating beam is studied. Using the absolute node coordinate formulation and geometric nonlinear deformation hypothesis, the nonlinear dynamic model of 3D flexible beam is established based on the general continuum theory. Based on the perturbation theory and the floating-point coordinate method, the vibration frequency domain analysis model of the rotating flexible beam is established by using the linearization technique. Then, the time domain simulation of the free single pendulum of the flexible beam is carried out, and the frequency domain characteristics of the 3D flexible rotating beam at different speeds are analyzed. The results show that as the rotation speed increases, its dynamic stiffening phenomenon is obvious, and the frequency corresponding to the mode shape of the vertical rotation plane and the torsional and tensile modes will gradually be transformed into low-order frequencies, thereby affecting the vibration characteristics of the flexible beam.

Key words: absolute node coordinate formulation, dynamic equation, continuum theory, modal shape, three-dimensional flexible beam

中图分类号: 

  • O313
[1] 王红州, 蔡恒欲, 任桐欣, 等. 直升机旋翼动力学优化浅析[J]. 兵器装备工程学报, 2018, 39(1): 25-28.
WANG H Z, CAI H Y, REN T X, et al. Analysis of helicopter rotor dynamic optimization [J]. Journal of Ordnance Equipment Engineering, 2018, 39(1): 25-28.
[2] 黄俊东, 夏鸿建, 李德源, 等. 大型风力机柔性叶片非线性气弹模态分析[J]. 机械工程学报, 2020, 56(14): 180-187.
HUANG J D, XIA H J, LI D Y, et al. Nonlinear aeroelastic modal analysis of large wind turbine flexible blades [J]. Journal of Mechanical Engineering, 2020, 56(14): 180-187.
[3] REN H. A simple absolute nodal coordinate formulation for thin beams with large deformations and large rotations[J]. Journal of Computational and Nonlinear Dynamics, 2015, 10(6): 061005.
[4] AHMED A S. Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics [J]. Nonlinear Dynamics, 1998, 16(3): 293-306.
[5] ZHANG X S, ZHAGN D G, CHEN S J, et al. Modal characteristics of a rotating flexible beam with a concentrated mass based on the absolute nodal coordinate formulation [J]. Nonlinear Dynamics, 2017, 88(1): 61-77.
[6] CHEN Y Z, ZHANG D G, LI L. Dynamic analysis of rotating curved beams by using absolute nodal coordinate formulation based on radial point interpolation method [J]. Journal of Sound and Vibration, 2019, 441: 63-83.
[7] 郑彤, 章定国, 洪嘉振. 三维大变形梁系统的动力学建模与仿真[J]. 机械工程学报, 2016, 52(19): 81-87.
ZHENG T, ZHANG D G, HONG J Z. Dynamic modeling and simulation for three dimensional flexible beam systems with large deformations [J]. Journal of Mechanical Engineering, 2016, 52(19): 81-87.
[8] 赵春璋, 余海东, 王皓, 等. 基于绝对节点坐标法的变截面梁动力学建模与运动变形分析[J]. 机械工程学报, 2014, 50(17): 38-45.
ZHAO C Z, YU H D, WANG H, et al. Dynamic modeling and kinematic behavior of variable crosssection beam based on the absolute nodal coordinate formulation [J]. Journal of Mechanical Engineering, 2014, 50(17): 38-45.
[9] 章孝顺, 章定国, 陈思佳, 等. 基于绝对节点坐标法的大变形柔性梁几种动力学模型研究[J]. 物理学报, 2016, 65(9): 148-157.
ZHANG X S, ZHANG D G, CHEN S J, et al. Several dynamic models of a large deformation flexiblebeam based on the absolute nodal coordinate formulation [J]. Acta Physical Sinica, 2016, 65(9): 148-157.
[10] 陈渊钊, 章定国, 黎亮. 平面细长梁基于无网格径向基点插值的绝对节点坐标法[J]. 振动工程学报, 2018, 31(2): 245-254.
CHEN Y Z, ZHANG D G, LI L. An absolute nodal coordinate formulation based on radial point interpolation method for planar slender beams [J]. Journal of Vibration Engineering, 2018, 31(2): 245-254.
[11] 马超. 绝对节点坐标列式单元动力学建模方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[12] 李永亮. 基于绝对节点坐标法的柔性梁动力学建模与分析[D]. 西安: 西安电子科技大学, 2014.
[13] 姚震, 余海东, 王皓. 基于绝对节点坐标法的柔性梁结构动态特性参数灵敏度分析[J]. 机械设计与研究, 2018, 34(3): 30-34.
YAO Z, YU H D, WANG H. Sensitivity analysis of dynamic parameters of flexible beams based on absolute nodal coordinate formulation [J]. Machine Design & Research, 2018, 34(3): 30-34.
[14] 李全乐, 赵春花. 基于绝对节点坐标法的高次插值梁单元建模[J]. 上海工程技术大学学报, 2018, 32(4): 329-333.
LI Q L, ZHAO C H. Higher-order interpolation beam element models based on absolute node coordinate formulation [J]. Journal of Shanghai University of Engineering Science, 2018, 32(4): 329-333.
[15] 田强. 基于绝对节点坐标方法的柔性多体系统动力学研究与应用[D]. 武汉: 华中科技大学, 2009.
[16] 黎明安. Matlab/Simulink动力学系统建模与仿真[M] . 北京: 国防工业出版社, 2012.
[17] MAQUEDA L G, BAUCHAU O A, SHABANA A A. Effect of the centrifugal forces on the finite element eigenvalue solution of a rotating blade: a comparative study [J]. Multibody System Dynamics, 2008, 19(3): 281-302.
[18] REFAATY Y, AHMED A S. Three dimensional absolute nodal coordinate formulation for beam elements: implementation and Applications[J]. Journal of Mechanical Design, 2001, 123(4): 614-621.
[19] MARCELLO B, AHMED A S. Study of the centrifugal stiffening effect using the finite element absolute nodal coordinate formulation [J]. Multibody System Dynamics, 2002, 7(4): 357-387.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!