广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (02): 76-83.doi: 10.12052/gdutxb.200172
张海波, 夏鸿建, 李德源, 刘佳宇
Zhang Hai-bo, Xia Hong-jian, Li De-yuan, Liu Jia-yu
摘要: 主要研究了三维柔性旋转梁的动力特性。采用绝对节点坐标法和几何非线性变形假设,基于一般连续介质理论,建立三维柔性梁的非线性动力学模型;基于摄动理论,结合浮点坐标方法,采用线性化技术,建立柔性旋转梁的振动频域分析模型。对柔性梁自由单摆进行时域仿真,并分析了不同转速下三维柔性旋转梁的频域特性。结果表明,随着转速增加梁的动力刚化现象明显,且垂直旋转平面的模态振型和扭转、拉伸振型所对应的频率会逐渐转化为低阶频率,从而影响柔性梁的振动特性。
中图分类号:
[1] 王红州, 蔡恒欲, 任桐欣, 等. 直升机旋翼动力学优化浅析[J]. 兵器装备工程学报, 2018, 39(1): 25-28. WANG H Z, CAI H Y, REN T X, et al. Analysis of helicopter rotor dynamic optimization [J]. Journal of Ordnance Equipment Engineering, 2018, 39(1): 25-28. [2] 黄俊东, 夏鸿建, 李德源, 等. 大型风力机柔性叶片非线性气弹模态分析[J]. 机械工程学报, 2020, 56(14): 180-187. HUANG J D, XIA H J, LI D Y, et al. Nonlinear aeroelastic modal analysis of large wind turbine flexible blades [J]. Journal of Mechanical Engineering, 2020, 56(14): 180-187. [3] REN H. A simple absolute nodal coordinate formulation for thin beams with large deformations and large rotations[J]. Journal of Computational and Nonlinear Dynamics, 2015, 10(6): 061005. [4] AHMED A S. Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics [J]. Nonlinear Dynamics, 1998, 16(3): 293-306. [5] ZHANG X S, ZHAGN D G, CHEN S J, et al. Modal characteristics of a rotating flexible beam with a concentrated mass based on the absolute nodal coordinate formulation [J]. Nonlinear Dynamics, 2017, 88(1): 61-77. [6] CHEN Y Z, ZHANG D G, LI L. Dynamic analysis of rotating curved beams by using absolute nodal coordinate formulation based on radial point interpolation method [J]. Journal of Sound and Vibration, 2019, 441: 63-83. [7] 郑彤, 章定国, 洪嘉振. 三维大变形梁系统的动力学建模与仿真[J]. 机械工程学报, 2016, 52(19): 81-87. ZHENG T, ZHANG D G, HONG J Z. Dynamic modeling and simulation for three dimensional flexible beam systems with large deformations [J]. Journal of Mechanical Engineering, 2016, 52(19): 81-87. [8] 赵春璋, 余海东, 王皓, 等. 基于绝对节点坐标法的变截面梁动力学建模与运动变形分析[J]. 机械工程学报, 2014, 50(17): 38-45. ZHAO C Z, YU H D, WANG H, et al. Dynamic modeling and kinematic behavior of variable crosssection beam based on the absolute nodal coordinate formulation [J]. Journal of Mechanical Engineering, 2014, 50(17): 38-45. [9] 章孝顺, 章定国, 陈思佳, 等. 基于绝对节点坐标法的大变形柔性梁几种动力学模型研究[J]. 物理学报, 2016, 65(9): 148-157. ZHANG X S, ZHANG D G, CHEN S J, et al. Several dynamic models of a large deformation flexiblebeam based on the absolute nodal coordinate formulation [J]. Acta Physical Sinica, 2016, 65(9): 148-157. [10] 陈渊钊, 章定国, 黎亮. 平面细长梁基于无网格径向基点插值的绝对节点坐标法[J]. 振动工程学报, 2018, 31(2): 245-254. CHEN Y Z, ZHANG D G, LI L. An absolute nodal coordinate formulation based on radial point interpolation method for planar slender beams [J]. Journal of Vibration Engineering, 2018, 31(2): 245-254. [11] 马超. 绝对节点坐标列式单元动力学建模方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [12] 李永亮. 基于绝对节点坐标法的柔性梁动力学建模与分析[D]. 西安: 西安电子科技大学, 2014. [13] 姚震, 余海东, 王皓. 基于绝对节点坐标法的柔性梁结构动态特性参数灵敏度分析[J]. 机械设计与研究, 2018, 34(3): 30-34. YAO Z, YU H D, WANG H. Sensitivity analysis of dynamic parameters of flexible beams based on absolute nodal coordinate formulation [J]. Machine Design & Research, 2018, 34(3): 30-34. [14] 李全乐, 赵春花. 基于绝对节点坐标法的高次插值梁单元建模[J]. 上海工程技术大学学报, 2018, 32(4): 329-333. LI Q L, ZHAO C H. Higher-order interpolation beam element models based on absolute node coordinate formulation [J]. Journal of Shanghai University of Engineering Science, 2018, 32(4): 329-333. [15] 田强. 基于绝对节点坐标方法的柔性多体系统动力学研究与应用[D]. 武汉: 华中科技大学, 2009. [16] 黎明安. Matlab/Simulink动力学系统建模与仿真[M] . 北京: 国防工业出版社, 2012. [17] MAQUEDA L G, BAUCHAU O A, SHABANA A A. Effect of the centrifugal forces on the finite element eigenvalue solution of a rotating blade: a comparative study [J]. Multibody System Dynamics, 2008, 19(3): 281-302. [18] REFAATY Y, AHMED A S. Three dimensional absolute nodal coordinate formulation for beam elements: implementation and Applications[J]. Journal of Mechanical Design, 2001, 123(4): 614-621. [19] MARCELLO B, AHMED A S. Study of the centrifugal stiffening effect using the finite element absolute nodal coordinate formulation [J]. Multibody System Dynamics, 2002, 7(4): 357-387. |
No related articles found! |
|