广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (05): 16-23.doi: 10.12052/gdutxb.210053
张巍, 张圳彬
Zhang Wei, Zhang Zhen-bin
摘要: 在特征选择领域, 现有的大多数方法不能同时捕获不同特征有差异的权重, 不能对投影子空间施加正交约束来提高特征的判别力。为此, 本文提出联合图嵌入与特征加权的无监督特征选择方法(Joint Graph Embedding and Feature Weighting, JGEFW)。首先, 通过图嵌入局部结构学习获得相似度矩阵和聚类指示矩阵; 然后利用正交回归获得表征不同特征重要程度的权重矩阵, 以此选择出判别力强且非冗余的特征。此外, 本文还提出了一个交替迭代优化算法来求解JGEFW模型; 最后, 在4个数据集上进行实验验证。实验结果表明, JGEFW的聚类指标在大多数情况下优于其他对比算法。
中图分类号:
[1] HU J, LI Y, GAO W, et al. Robust multi-label feature selection with dual-graph regularization [J]. Knowledge-Based Systems, 2020, 203: 106126. [2] 费伦科, 秦建阳, 滕少华, 等. 近似最近邻大数据检索哈希散列方法综述[J]. 广东工业大学学报, 2020, 37(3): 23-35. FEI L K, QIN J Y, TENG S H, et al. Hashing for approximate nearest neighbor search on big data: A survey [J]. Journal of Guangdong University of Technology, 2020, 37(3): 23-35. [3] HOU C, NIE F, YI D, et al. Feature selection via joint embedding learning and sparse regression[C]//IJCAI International Joint Conference on Artificial Intelligence. Spain: Morgan Kaufmann, 2011: 1324-1329. [4] WANG S, WANG H. Unsupervised feature selection via low-rank approximation and structure learning [J]. Knowledge-Based Systems, 2017, 124: 70-79. [5] 刘艳芳, 李文斌, 高阳. 基于自适应邻域嵌入的无监督特征选择算法[J]. 计算机研究与发展, 2020, 57(8): 1639-1649. LIU Y F, LI W B, GAO Y. Adaptive neighborhood embedding based unsupervised feature selection [J]. Journal of Computer Research and Development, 2020, 57(8): 1639-1649. [6] 滕少华, 冯镇业, 滕璐瑶, 等. 联合低秩表示与图嵌入的无监督特征选择[J]. 广东工业大学学报, 2019, 36(5): 7-13. TENG S H, FENG Z Y, TENG L Y, et al. Joint low-rank representation and graph embedding for unsupervised feature selection [J]. Journal of Guangdong University of Technology, 2019, 36(5): 7-13. [7] ZHENG W, YAN H, YANG J. Robust unsupervised feature selection by nonnegative sparse subspace learning [J]. Neurocomputing, 2019, 334: 156-171. [8] DING D, YANG X, XIA F, et al. Unsupervised feature selection via adaptive hypergraph regularized latent representation learning [J]. Neurocomputing, 2020, 378: 79-97. [9] TENG L, FENG Z, FANG X, et al. Unsupervised feature selection with adaptive residual preserving [J]. Neurocomputing, 2019, 367: 259-272. [10] LIU X, WANG L, ZHANG J, et al. Global and local structure preservation for feature selection [J]. IEEE Transactions on Neural Networks and Learning Systems, IEEE, 2014, 25(6): 1083-1095. [11] DU L, SHEN Y D. Unsupervised feature selection with adaptive structure learning[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney: ACM, 2015-August: 209-218. [12] CAI D, ZHANG C, HE X. Unsupervised feature selection for multi-cluster data[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 333-342. [13] QIAN M, ZHAI C. Robust unsupervised feature selection[C]//IJCAI International Joint Conference on Artificial Intelligence. Beijing: Morgan Kaufmann, 2013: 1621-1627. [14] LI Z, YANG Y, LIU J, et al. Unsupervised feature selection using nonnegative spectral analysis[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Toronto: AAAI, 2012: 1026-1032. [15] NIE F, WANG X, HUANG H. Clustering and projected clustering with adaptive neighbors[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 977-986. [16] XU X, WU X, WEI F, et al. A general framework for feature selection under orthogonal regression with global redundancy minimization [J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 99: 1-1. [17] ZHAO H, WANG Z, NIE F. Orthogonal least squares regression for feature extraction [J]. Neurocomputing, 2016, 216: 200-207. [18] WU X, XU X, LIU J, et al. Supervised feature selection with orthogonal regression and feature weighting [J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(5): 1831-1838. [19] NIE F, ZHANG R, LI X. A generalized power iteration method for solving quadratic problem on the Stiefel manifold [J]. Science China(Information Sciences), 2017, 60(11): 5-11. [20] HUANG J, NIE F, HUANG H. A new simplex sparse learning model to measure data similarity for clustering[C]//IJCAI International Joint Conference on Artificial Intelligence. Buenos Aires: Morgan Kaufmann, 2015: 3569-3575. [21] LIU Y, YE D, LI W, et al. Robust neighborhood embedding for unsupervised feature selection [J]. Knowledge-Based Systems, 2020, 193: 105462. [22] LI X, ZHANG H, ZHANG R, et al. Generalized uncorrelated regression with adaptive graph for unsupervised feature selection [J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(5): 1587-1595. [23] THARWAT A, GABER T, IBRAHIM A, et al. Linear discriminant analysis: a detailed tutorial [J]. AI Communications, 2017, 30(2): 169-190. [24] SHANG R, WANG W, STOLKIN R, et al. Non-negative spectral learning and sparse regression-based dual-graph regularized feature selection [J]. IEEE Transactions on Cybernetics, IEEE, 2018, 48(2): 793-806. |
[1] | 谭有新, 滕少华. 短文本特征的组合加权方法[J]. 广东工业大学学报, 2020, 37(05): 51-61. |
[2] | 岑仕杰, 何元烈, 陈小聪. 结合注意力与无监督深度学习的单目深度估计[J]. 广东工业大学学报, 2020, 37(04): 35-41. |
[3] | 滕少华, 冯镇业, 滕璐瑶, 房小兆. 联合低秩表示与图嵌入的无监督特征选择[J]. 广东工业大学学报, 2019, 36(05): 7-13. |
[4] | 陈平华, 黄辉, 麦淼, 周宏虹. 结合ReliefF和互信息的多标签特征选择算法[J]. 广东工业大学学报, 2018, 35(05): 20-25,50. |
[5] | 贺科达, 朱铮涛, 程昱. 基于改进TF-IDF算法的文本分类方法研究[J]. 广东工业大学学报, 2016, 33(05): 49-53. |
[6] | 蒋盛益, 王连喜. 聚类分析研究的挑战性问题[J]. 广东工业大学学报, 2014, 31(3): 32-38. |
|