广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (06): 20-28.doi: 10.12052/gdutxb.210101

• • 上一篇    下一篇

相衬光学相干层析在无损检测领域的应用

谢胜利1, 廖文建1, 白玉磊1, 梁勇2, 董博1,2   

  1. 1. 广东工业大学 自动化学院,广东 广州 510006;
    2. 澳门科技大学 资讯科技学院,澳门 999078
  • 收稿日期:2021-07-06 出版日期:2021-11-10 发布日期:2021-11-09
  • 通信作者: 董博(1989–),男,助理研究员,博士,主要研究方向为全场形貌形变检测技术,E-mail:b.dong@gdut.edu.cn E-mail:b.dong@gdut.edu.cn
  • 作者简介:谢胜利(1956–),男,教授,博士生导师,IEEE Fellow,主要研究方向为信号盲处理理论与盲检测技术
  • 基金资助:
    国家自然科学基金资助项目(11802008,61727810,61705047);广东省自然科学基金资助项目(2021A1515012598,2021A1515011945)

Phase-Contrast Optical Coherence Tomography in Applications of Non-destructive Testing

Xie Sheng-li1, Liao Wen-jian1, Bai Yu-lei1, Liang Yong2, Dong Bo1,2   

  1. 1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
    2. Faculty of Information Technology, Macau University of Science and Technology, Macau 999078, China
  • Received:2021-07-06 Online:2021-11-10 Published:2021-11-09

摘要: 光学相干层析(Optical Coherence Tomography, OCT)作为一种具有微米级分辨率和毫米级量程的层析成像技术, 可用于透明/半透明物体(如聚合物材料、陶瓷材料、复合材料等)内部微观结构信息的探测与成像。在结合了相衬方法后, 该技术还可利用干涉信号的相位敏感特性, 实现纳米级位移场与微应变级形变场的高灵敏度测量, 用于材料内部全场力学行为的表征与测试。在近十余年发展中, 相衬OCT已逐渐成为无损检测领域的研究热点, 受到了国际相关学者的广泛关注。本文旨在介绍相衬OCT基本原理及其在检测领域典型应用(包括多层结构热变形场层析测量、聚合物内部固化过程可视化监测、材料内部微缺陷高灵敏辨识等)的基础上, 对其未来发展进行探讨与展望。

关键词: 光学相干层析, 无损检测, 全场形变测量, 固化过程监测, 内部缺陷检测

Abstract: Optical coherence tomography (OCT) is an emerging imaging technique that measures internal structures of transparent and semitransparent objects, e.g. polymers, ceramics, and composites, with micrometer resolution and millimeter range. After combining with the method of phase-contrast, the technique is also available for measuring nanometer level displacement field and micro-strain level deformation field inside objects due to the high sensitivity of interference phase. Since it can be employed for characterizing and testing full-field mechanical behaviors of inside materials, the technique has gained rapid development and more attention in the last decade, which has already become a hot topic in non-destructive testing. In this review, the basic principle of phase-contrast OCT was firstly described, some typical applications were then introduced, e.g. depth-resolved thermal deformation measurement of multilayer structure, curing processing visualization inside polymer, and micro defect identification inside materials, and some future developments were finally discussed.

Key words: optical coherence tomography, non-destructive testing, full-field deformation measurement, curing process visualization, internal defect identification

中图分类号: 

  • TN247
[1] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography [J]. Science, 1991, 254(5035): 1178-1181.
[2] FUJIMOTO J G, PITRIS C, BOPPART S A, et al. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy [J]. Neoplasia, 2000, 2(1-2): 9-25.
[3] SU R, KIRILLIN M, CHANG E W, et al. Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics [J]. Optics Express, 2014, 22(13): 15804-15819.
[4] BOER J F D, LEITGEB R, WOJTKOWSKI M. Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [J]. Biomedical Optics Express, 2017, 8(7): 3248-3280.
[5] 董博, 潘兵. 光学相干层析及其在实验力学中的应用[J]. 科学通报, 2020, 65(20): 2094-2105.
DONG B, PAN B. Optical coherence tomography and its applications in experimental mechanics: a review [J]. Chinese Science Bulletin, 2020, 65(20): 2094-2105.
[6] SUN C, STANDISH B, VUONG B, et al. Digital image correlation-based optical coherence elastography [J]. Journal of Biomedical Optics, 2013, 18(12): 121515.
[7] FU J, PIERRON F, RUIZ P D. Elastic stiffness characterization using three-dimensional full-field deformation obtained with optical coherence tomography and digital volume correlation [J]. Journal of Biomedical Optics, 2013, 18(12): 121512.
[8] LIU P, GROVES R M, BENEDICTUS R. Optical coherence elastography for measuring the deformation within glass fiber composite [J]. Applied Optics, 2014, 53(22): 5070-5077.
[9] ZAITSEV V Y, MATVEYEV A L, MATVEEV L A, et al. Optical coherence elastography for strain dynamics measurements in laser correction of cornea shape [J]. Journal of Biophotonics, 2017, 10(9): 1450-1463.
[10] BOER J, MILNER T E, GEMERT M, et al. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography [J]. Optics Letters, 1997, 22(12): 934-936.
[11] YASUNO, MAKITA, SUTOH, et al. Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography [J]. Optics Letters, 2002, 27(20): 1803-1805.
[12] LEITGEB R A, WERKMEISTER R M, BLATTER C, et al. Doppler optical coherence tomography [J]. Progress in Retinal & Eye Research, 2014, 41(10): 26-43.
[13] WESTPHAL V, YAZDANFAR S, ROLLINS A M, et al. Real-time, high velocity-resolution color Doppler optical coherence tomography [J]. Optics Letters, 2002, 27(1): 34-36.
[14] KENNEDY B F, WIJESINGHE P, SAMPSON D D. The emergence of optical elastography in biomedicine [J]. Nature Photonics, 2017, 11(4): 215-221.
[15] LARIN K V, SAMPSON D D. Optical coherence elastography-OCT at work in tissue biomechanics [J]. Biomedical Optics Express, 2017, 8(2): 1172-1202.
[16] NICHALUK L, IYER R R, UNTRACHT G R, et al. Photonic force optical coherence elastography for three-dimensional mechanical microscopy [J]. Nature Communications, 2017, 9(1): 2079.
[17] TORRE-IBARRA M, RUIZ P D, HUNTLEY J M. Double-shot depth-resolved displacement field measurement using phase-contrast spectral optical coherence tomography [J]. Optics Express, 2006, 14(21): 9643-9656.
[18] TORRE-IBARRA M, RUIZ P D, HUNTLEY J M. Simultaneous measurement of in-plane and out-of-plane displacement fields in scattering media using phase-contrast spectral optical coherence tomography [J]. Optics Letters, 2009, 34: 806-808.
[19] LIU H, DONG B, BAI Y, et al. Perspective measurement of the out-of-plane displacement and normal strain field distributions inside glass fibre-reinforced resin matrix composite [J]. Strain, 2015, 51(3): 198-205.
[20] 董博, 徐金雄, 白玉磊, 等. 快速和高精度透视测量玻璃纤维/树脂复合材料构件内部的离面位移[J]. 复合材料学报, 2014, 31(2): 331-337.
DONG B, XU J X, BAI Y L, et al. Rapid and high-precision measurement of out-of-plane displacement inside the glass fiber/polymer composite [J]. Acta Materiae Compositae Sinica, 2014, 31(2): 331-337.
[21] ZHANG W, DONG B, ZHANG W, et al. Depth-resolved measurement of the compression displacement fields on the front and rear surfaces of an epoxy sample [J]. Optica Applicata, 2018, 48(2): 311-323.
[22] DONG B, ZHANG Y, YE S, et al. Dual-channel phase-contrast spectral optical coherence tomography for simultaneously measuring axial and normal to B-scan off-axial displacements [J]. Optics and Lasers in Engineering, 2017, 96: 35-38.
[23] 周延周, 朱文卓, 董博, 等. 树脂基复合材料内部离面位移场和应变场分布的动态测量[J]. 光学精密工程, 2014, 12: 3217-3223.
ZHOU Y Z, ZHU W Z, DONG B, et al. Dynamical measurement of out-of-plane displacement field and strain field inside resin composite [J]. Optics and Precision Engineering, 2014, 12: 3217-3223.
[24] LV Z, BAI Y, HE Z, et al. Super-resolution reconstruction of speckle phase in depth-resolved wavelength scanning interference using the total least-squares analysis [J]. Journal of the Optical Society of America. A, Optics, image science, and vision, 2019, 36(5): 869-876.
[25] XU J, LIU Y, DONG B, et al. Improvement of the depth resolution in depth-resolved wavenumber-scanning interferometry using multiple uncorrelated wavenumber bands [J]. Appl Opt, 2013, 52(20): 4890-4897.
[26] BAI Y, ZHOU Y, HE Z, et al. Compressed-sensing wavenumber-scanning interferometry [J]. Optics & Laser Technology, 2018, 98: 229-233.
[27] BAI Y, ZHOU Y, HE Z, et al. Wavenumber synthesis approach to high-resolution wavenumber scanning interference using a mode-hoped laser [J]. Optics Express, 2018, 26(5): 5441-5451.
[28] KENNEDY B F, KOH S H, MCLAUGHLIN R A, et al. Strain estimation in phase-sensitive optical coherence elastography [J]. Biomedical Optics Express, 2012, 3(8): 1865-1879.
[29] MATVEYEV A L, MATVEEV L A, SOVETSKY A A, et al. Vector method for strain estimation in phase-sensitive optical coherence elastography [J]. Laser Physics Letters, 2018, 15(6): 065603.
[30] ZAITSEV V Y, MATVEYEV A L, MATVEEV L A, et al. Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography [J]. Journal of Biomedical Optics, 2016, 15(6): 065603.
[31] ZAITSEV V Y, MATVEYEV A L, MATVEEV L A, et al. Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking [J]. Journal of Biophotonics, 2016, 9(5): 499-509.
[32] DONG B, ZHANG Y, PAN B. Enhancing the dynamic range of phase-sensitive optical coherence elastography by overcoming speckle decorrelation [J]. Optics Letters, 2018, 43(23): 5805-5808.
[33] ZHANG Y, DONG B, BAI Y, et al. Measurement of depth-resolved thermal deformation distribution using phase-contrast spectral optical coherence tomography [J]. Optics Express, 2015, 23(21): 28067-28075.
[34] DONG B, XIE S, HE Z, et al. Simultaneous measurement of temperature-dependent refractive index and depth-resolved thermal deformation fields inside polymers [J]. Polymer Testing, 2017, 65: 297-300.
[35] DONG B, PAN B. Visualizing curing process inside polymers [J]. Applied Physics Letters, 2020, 116(5): 054103.
[36] DONG B, PAN B, ZHANG Y, et al. Microdefect identification in polymers by mapping depth-resolved phase-difference distributions using optical coherence tomography [J]. Polymer Testing, 2018, 68: 233-237.
[37] DUNKERS J P, PHELAN F R, SANDERS D P, et al. The application of optical coherence tomography to problems in polymer matrix composites [J]. Optics & Lasers in Engineering, 2001, 35(3): 135-147.
[38] LIU P, GROVES R M, BENEDICTUS R. Optical coherence tomography for the study of polymer and polymer matrix composites [J]. Strain, 2014, 50(5): 436-443.
[39] NISHⅡ H, NAGATSUMA T, IKEO T. Terahertz imaging based on optical coherence tomography [J]. Photonics Research, 2014, 2(4): 1-5.
[40] ISRAELSEN N M, PETERSEN C R, BARH A, et al. Real-time high-resolution mid-infrared optical coherence tomography [J]. Light: Science & Applications, 2019, 8(1): 11.
[1] 吴智新, 董博, 周延周. 层析测量聚合物材料内部连续变化的离面变形场[J]. 广东工业大学学报, 2016, 33(06): 62-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!