广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (06): 70-76.doi: 10.12052/gdutxb.210136

• • 上一篇    下一篇

离散制造智能工厂场景的AGV路径规划方法

郭心德1, 丁宏强2,3   

  1. 1. 广东工业大学 自动化学院,广东 广州 510006;
    2. 物联网智能信息处理与系统集成教育部重点实验室,广东 广州 510006;
    3. 香港中文大学,广东 深圳 518172
  • 收稿日期:2021-09-06 出版日期:2021-11-10 发布日期:2021-11-09
  • 通信作者: 丁宏强(1954–),男,教授,博士,主要研究方向为机器学习、数据挖掘、生物信息学、信息检索、网络链接分析和高性能计算,E-mail:chrisding@cuhk.edu.cn E-mail:chrisding@cuhk.edu.cn
  • 作者简介:郭心德(1996–),男,硕士研究生,主要研究方向为深度强化学习和路径规划,E-mail:ward@mail2.gdut.edu.cn
  • 基金资助:
    国家重点研发计划项目(2020AAA0108304);国家自然科学基金资助项目(62073088,U1911401,U1701261);广东省基础与应用基础研究基金资助项目(2019A1515011606)

An AGV Path Planning Method for Discrete Manufacturing Smart Factory

Guo Xin-de1, Chris Hong-qiang Ding2,3   

  1. 1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
    2. Key Laboratory of Intelligent Information Processing and System Integration of IoT, Ministry of Education, Guangzhou 510006, China;
    3. The Chinese University of Hong Kong, Shenzhen 518172, China
  • Received:2021-09-06 Online:2021-11-10 Published:2021-11-09

摘要: 自动导引车(Automated Guided Vehicle, AGV)的自主路径规划是离散制造智能工厂中物流系统的重要组成部分, AGV可以大大提高离散智能制造的智能化和自动化能力, 而传统的AGV导航方式自由度较低。本文研究面向离散制造智能工厂场景下的AGV自主路径规划问题, 应用深度强化学习方法提高自主路径规划的自由度。设计了一种多模态环境信息感知的神经网络结构, 并将AGV在全局障碍下的路径规划预训练策略引入到复杂的离散制造智能工厂场景下的路径规划, 实现了AGV从环境感知到动作决策的端到端路径规划。实验结果表明, 采用本文提出算法的AGV能够在复杂的离散制造智能工厂环境进行自主规划路径, 并具有较高的成功率和避障能力。

关键词: 自动导引车(AGV), 路径规划, 深度强化学习, 神经网络结构

Abstract: Automated guided vehicle (AGV) autonomous path planning is an important part of the logistics system in discrete manufacturing smart factories. AGV can greatly improve the intelligence and automation capabilities of discrete smart manufacturing. The traditional AGV navigation method has a low degree of freedom. The autonomous path planning of AGV is studied under the scenario of discrete manufacturing smart factories, and deep reinforcement learning methods applied to improve the freedom of autonomous path planning. A neural network structure for multi-modal environmental information perception is designed, and the path planning policy of AGV under global obstacles introduced to the path planning in the complex discrete manufacturing smart factory scenario, thereby realizing the AGVs end-to-end path planning from environmental perception to action for decision making. The experimental results show that AGV can independently plan paths in the complex and unknown intelligent logistics system environment of discrete manufacturing smart factories, and has a high success rate and obstacle avoidance ability.

Key words: automated guided vehicle (AGV), path planning, deep reinforcement learning, neural network structure

中图分类号: 

  • TP242.2
[1] WU Z S, FU W P. A review of path planning method for mobile robot [J]. Advanced Materials Research, 2014, 1030-1032: 1588-1591.
[2] REN Z G, LAI J L, WU Z Z, et al. Deep neural networks-based real-time optimal navigation for an automatic guided vehicle with static and dynamic obstacles [J]. Neurocomputing, 2021, 443: 329-344.
[3] PATLE B K, GANESH B L, PANDEY A, et al. A review: on path planning strategies for navigation of mobile robot [J]. Defence Technology, 2019, 15(4): 258-276.
[4] 高明, 唐洪, 张鹏. 机器人集群路径规划技术研究现状[J]. 国防科技大学学报, 2021, 43(1): 127-138.
GAO M, TANG H, ZHANG P. Survey of path planning technologies for robots swarm [J]. Journal of National University of Defense Technology, 2021, 43(1): 127-138.
[5] SONG R, LIU Y, BUCKNALL R. Smoothed A* algorithm for practical unmanned surface vehicle path planning [J]. Applied Ocean Research, 2019, 83: 9-20.
[6] STENTZ A. The focussed D* algorithm for real-time replanning[C]//Proceedings of International Joint Conference on Artificial Intelligence. San Mateo: Morgan Kaufmann Publishers, 1995: 1652-1659.
[7] 梁嘉俊, 曾碧, 何元烈. 基于改进势场栅格法的清洁机器人路径规划算法研究[J]. 广东工业大学学报, 2016, 33(4): 30-36.
LIANG J J, ZENG B, HE Y L. Research on path planning algorithm for cleaning robot based on improved potential field grid method [J]. Journal of Guangdong University of Technology, 2016, 33(4): 30-36.
[8] 胡杰, 张华, 傅海涛, 等. 改进人工势场法在移动机器人路径规划中的应用[J]. 机床与液压, 2021, 49(3): 6-10.
HU J, ZHANG H, FU H T, et al. Application of improved artificial potential field method in path planning of mobile robots [J]. Machine Tool & Hydraulics, 2021, 49(3): 6-10.
[9] WANG H J, FU Y, ZHAO Z Q, et al. An improved ant colony algorithm of robot path planning for obstacle avoidance[J/OL]. Journal of Robotics, 2019: 1-8[2021-05-18]. https://doi.org/10.1155/2019/6097591.
[10] FRANOIS-LAVET V, HENDERSON P, ISLAM R, et al. An Introduction to Deep Reinforcement Learning [J]. Foundations and Trends in Machine Learning, 2018, 11(3/4): 219-354.
[11] 刘朝阳, 穆朝絮, 孙长银. 深度强化学习算法与应用研究现状综述[J]. 智能科学与技术学报, 2020, 2(4): 314-326.
LIU C Y, MU C X, SUN C Y. An overview on algorithms and applications of deep reinforcement learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 314-326.
[12] SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge [J]. Nature:International Weekly Journal of Science, 2017, 550: 354-359.
[13] LIANG X Y, DU X S, WANG G L, et al. A deep reinforcement learning network for traffic light cycle control [J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1243-1253.
[14] 周思雨, 白成超. 基于深度强化学习的行星车路径规划方法研究[J]. 无人系统技术, 2019, 2(4): 38-45.
ZHOU S Y, BAI C C. Research on planetary rover path planning method based on deep reinforcement learning [J]. Unmanned Systems Technology, 2019, 2(4): 38-45.
[15] XIE R L, MENG Z J, WANG L F, et al. Unmanned aerial vehicle path planning algorithm based on deep reinforcement learning in large-scale and dynamic environments [J]. IEEE Access, 2021, 9(1): 24884-24900.
[16] 吴运雄, 曾碧. 基于深度强化学习的移动机器人轨迹跟踪和动态避障[J]. 广东工业大学学报, 2019, 36(1): 42-50.
WU Y X, ZENG B. Trajectory tracking and dynamic obstacle avoidance of mobile robot based on deep reinforcement learning [J]. Journal of Guangdong University of Technology, 2019, 36(1): 42-50.
[17] NING W A, XP B, SFS C. Finite-time fault-tolerant trajectory tracking control of an autonomous surface vehicle [J]. Journal of the Franklin Institute, 2020, 357(16): 11114-11135.
[18] 秦智慧, 李宁, 刘晓彤, 等. 无模型强化学习研究综述[J]. 计算机科学, 2021, 48(3): 180-187.
QIN Z H, LI N, LIU X T, et al. Overview of research on model-free reinforcement learning [J]. Computer Science, 2021, 48(3): 180-187.
[19] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning [J]. Computer Science, 2013, 56(1): 201-220.
[20] VOLODYMYR M, KORAY K, DAVID S, et al. Human-level control through deep reinforcement learning [J]. Nature, 2015, 518: 529-533.
[21] VAN H V, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning [J]. Computer Science, 2015, 34(2): 2094-2100.
[22] WANG Z, FREITAS N D, LANCTOT M. Dueling network architectures for deep reinforcement learning[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning(ICML). New York: JMLR org, 2016, 48: 1995-2003.
[23] FAN S, SONG G H, YANG B W, et al. Prioritized experience replay in multi-actor-attention-critic for reinforcement learning [J]. Journal of Physics Conference Series, 2020, 1631: 012040.
[1] Gary Yen, 栗波, 谢胜利. 地球流体动力学模型恢复的长短期记忆网络渐进优化方法[J]. 广东工业大学学报, 2021, 38(06): 1-8.
[2] 叶伟杰, 高军礼, 蒋丰, 郭靖. 一种提升机器人强化学习开发效率的训练模式研究[J]. 广东工业大学学报, 2020, 37(05): 46-50.
[3] 吴运雄, 曾碧. 基于深度强化学习的移动机器人轨迹跟踪和动态避障[J]. 广东工业大学学报, 2019, 36(01): 42-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!