广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (04): 94-101.doi: 10.12052/gdutxb.220114

• 综合研究 • 上一篇    下一篇

具有不同节点的复杂动态网络有限时间部分状态分量同步控制

吴曼, 张丽丽   

  1. 广东工业大学 数学与统计学院, 广东 广州 510520
  • 收稿日期:2022-07-05 出版日期:2023-07-25 发布日期:2023-08-02
  • 通信作者: 张丽丽(1978–), 女,副教授,硕士生导师,主要研究方向为复杂网络与复杂系统的控制, E-mail: zh_lili@gdut.edu.cn
  • 作者简介:吴曼(1998–), 女,硕士研究生,主要研究方向为复杂动态网络部分状态分量同步控制
  • 基金资助:
    国家自然科学基金资助项目(61603098) ;广东省基础与应用基础研究基金资助项目(2020A1515010809)

Finite-time Partial State Components Synchronization Control for Complex Dynamical Networks with Nonidentical Nodes

Wu Man, Zhang Li-li   

  1. School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2022-07-05 Online:2023-07-25 Published:2023-08-02

摘要: 针对一类由不同节点组成的复杂动态网络,提出了一种分散控制策略以实现有限时间部分状态分量同步(只考虑网络中每个节点的部分状态分量在有限时间内达到同步) 。首先,为了方便理论分析及推导,引入了一个特殊对角矩阵来表述每个节点所需关注的状态分量。其次,基于此特殊对角矩阵,给出了有限时间部分状态分量同步的定义。与有限时间同步相比,有限时间部分状态分量同步更广泛。再次,结合控制理论以及有限时间稳定性定理,提出了分散控制策略使网络实现有限时间部分状态分量同步。最后,通过一个仿真例子,验证了控制方法的有效性与正确性。

关键词: 复杂动态网络, 有限时间部分状态分量同步, 分散控制, 不同节点

Abstract: For a class of complex dynamic networks composed of nonidentical nodes, a decentralized control strategy is proposed to achieve the finite-time partial state components synchronization. The finite-time partial state components synchronization means that only some, not all, state components of each node in the network can achieve synchronization in finite time. Firstly, for the convenience of the theoretical analyses and derivation, a special diagonal matrix is introduced, which can formulate the desired state components of each node. Secondly, based on this special diagonal matrix, the finite-time partial state components synchronization is defined. Compared to the finite-time synchronization, the finite-time partial state components synchronization is more popular. Thirdly, according to both the control theory and the finite-time stability theorem, a decentralized control strategy is proposed, so that our networks can achieve the finite-time partial state components synchronization. Finally, a simulation example is shown to verify the effectiveness and correctness of the proposed control strategy in this paper.

Key words: complex dynamical networks, finite-time partial state components synchronization, decentralized control, nonidentical nodes

中图分类号: 

  • TP273
[1] LI C G, CHEN L N, AIHARA K. Synchronization of coupled nonidentical genetic oscillators[J]. Physical Biology, 2006, 3(1): 37-44.
[2] BOCCALETTI S, LATORA V, MORENO Y, et al. Complex networks: structure and dynamics[J]. Physics Reports, 2006, 424(4/5): 175-308.
[3] LIU H J, MA L F, WANG Z D, et al. An overview of stability analysis and state estimation for memristive neural networks[J]. Neurocomputing, 2020, 391: 1-12.
[4] HONGSRI A, BOTMART T, WEERA W, et al. New delay-dependent synchronization criteria of complex dynamical networks with time-varying coupling delay based on sampled-data control via new integral inequality[J]. IEEE Access, 2021, 9: 64958-64971.
[5] 来鑫, 乌建中, 张珍, 等. 多桩锤同步振动系统及同步控制策略研究[J]. 振动与冲击, 2012, 31(3): 147-152.LAI X, WU J Z, ZHANG Z, et al. Synchronous vibration system of multi-hammer and synchronous control strategy[J]. Journal of Vibration and Shock, 2012, 31(3): 147-152.
[6] LYV L, LI C R, BAI S Y, et al. Synchronization of uncertain time-varying network based on sliding mode control technique[J]. Physica A:Statistical Mechanics and its Applications, 2017, 482: 808-817.
[7] TONG L Y, LIANG J L, LIU Y. Generalized cluster synchronization of Boolean control networks with delays in both the states and the inputs[J]. Journal of the Franklin Institute, 2022, 359(1): 206-223.
[8] HE X L, ZHANG H Y. Exponential synchronization of complex networks via feedback control and periodically intermittent noise[J]. Journal of the Franklin Institute, 2022, 359(8): 3614-3630.
[9] ARELLANO-DELGADO A, LÓPEZ-GUTIÉRREZ R M, MÉNDEZ-RAMÍREZ R, et al. Dynamic coupling in small-world outer synchronization of chaotic networks[J]. Physica D:Nonlinear Phenomena, 2021, 423: 132928.
[10] RUAN Z Y, LI Y Y, HU J H, et al. Finite-time synchronization of the drive-response networks by event-triggered aperiodic intermittent control[J]. Neurocomputing, 2022, 485: 89-102.
[11] ZHAO Y S, LI X D, RAO R F. Synchronization of nonidentical complex dynamical networks with unknown disturbances via observer-based sliding mode control[J]. Neurocomputing, 2021, 454: 441-447.
[12] LI Y, SONG F Y, LIU J L, et al. Decentralized event-triggered synchronization control for complex networks with nonperiodic DoS attacks[J]. International Journal of Robust and Nonlinear Control, 2022, 32(3): 1633-1653.
[13] WANG Y, SONG H Y, CHEN G Y, et al. p components of cluster-lag consensus for second-order multiagent systems with adaptive controller on cooperative-competitive networks[J]. IEEE Transactions on Cybernetics, 2023, 53(5): 2852-2863.
[14] LI F B, MA Z J, DUAN Q C. Clustering component synchronization in a class of unconnected networks via pinning control[J]. Physica A:Statistical Mechanics and its Applications, 2019, 525: 394-401.
[15] XIAO F, WANG L, CHEN J. Partial state consensus for networks of second-order dynamic agents[J]. Systems & Control Letters, 2010, 59: 775-781.
[16] LI F B, MA Z J, DUAN Q C. Partial component synchronization on chaotic networks[J]. Physica A:Statistical Mechanics and its Applications, 2019, 515: 707-714.
[17] HU W J, ZHANG G, MA Z J, et al. Partial component consensus of discrete-time multiagent systems[J]. Mathematical Problems in Engineering, 2019, 2019: 4725418.
[18] ZHANG Z C, MA Z J, WANG Y. Partial component consensus of leader-following multi-agent systems via intermittent pinning control[J]. Physica A:Statistical Mechanics and its Applications, 2019, 536: 122569.
[19] 吴彬彬, 马忠军, 王毅. 领导-跟随多智能体系统的部分分量一致性[J]. 物理学报, 2017, 66(6): 5-11.WU B B, MA Z J, WANG Y. Partial component consensus of leader-following multi-agent systems[J]. Acta Physica Sinica, 2017, 66(6): 5-11.
[20] ZHAO J, HILL D J, LIU T. Synchronization of dynamical networks with nonidentical nodes: criteria and control[J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 2011, 58(3): 584-594.
[21] LUO J, QU S C, XIONG Z L, et al. Observer-based finite-time modified projective synchronization of multiple uncertain chaotic systems and applications to secure[J]. IEEE Access, 2019, 7: 65527-65543.
[22] XIAO F, GAN Q T. Finite-time synchronization of delayed complex dynamical network via pinning control[J]. Advances in Difference Equations, 2017, 2017(1): 345.
[23] WANG J L, WANG Q, WU H N, et al. Finite-time output synchronization and H output synchronization of coupled neural networks with multiple output couplings[J]. IEEE Transactions on Cybernetics, 2021, 51(12): 6041-6053.
[24] SHI Y J, MA Y. Finite/fixed-time synchronization for complex networks via quantized adaptive control[J]. Electronic Research Archive, 2021, 29(2): 2047-2061.
[25] ZHANG W L, YANG X S, YANG S J, et al. Finite-time and fixed-time bipartite synchronization of complex networks with signed graphs[J]. Mathematics and Computers in Simulation, 2021, 188: 319-329.
[26] LI J R, JIANG H J, HU C, et al. Analysis and discontinuous control for finite-time synchronization of delayed complex dynamical networks[J]. Chaos, Solitons & Fractals, 2018, 114: 291-305.
[27] DONG Y, CHEN J W, XIAN J G. Event-triggered control for finite-time lag synchronisation of time-delayed complex networks[J]. IET Control Theory and Applications, 2018, 12: 1916-1923.
[28] TANG Y. Terminal sliding mode control for rigid robots[J]. Automatica, 1998, 34(1): 51-56.
[29] HARDY G, LITTLEWOOD J, POLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1952.
[30] WANG Y H, WANG W L, ZHANG L L. State synchronization of controlled nodes via the dynamics of links for complex dynamical networks[J]. Neurocomputing, 2020, 384: 225-230.
[31] CHANG W D. Parameter identification of Rossler's chaotic system by an evolutionary algorithm[J]. Chaos, Solitons & Fractals, 2006, 29(5): 1047-1053.
[32] ZHANG L L, LEI Y F, WANG Y H, et al. Matrix projective synchronization for time-varying disturbed networks with uncertain nonlinear structures and different dimensional nodes[J]. Neurocomputing, 2018, 311: 11-23.
[1] 杨玲玲; . PC机与分散控制系统通信的实现[J]. 广东工业大学学报, 2005, 22(3): 72-75.
[2] 刘红霞; 胥布工; 朱学峰; . 一种关联时滞大系统的状态反馈控制器的设计[J]. 广东工业大学学报, 2001, 18(4): 5-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!