• •
李欣宇1, 余俊鹏1, 吴伟东2
Li Xin-yu1, Yu Jun-peng1, Wu Wei-dong2
摘要: 以ICESat-2/ATLAS为代表的单光子激光雷达具有观测灵敏度高、背景噪声大的特点,需要合适的滤波方法去除噪声点。本文基于点云密度去噪原理,提出了一种自适应光子点云信号提取方法。该方法首先根据地表地形对点云进行栅格划分,以栅格为单元对点云进行连续性检验,实现点云粗滤波;利用K均值聚类算法和布料模拟滤波完成点云精细分类和光子高程点提取。对ATL03光子点云实验结果表明,本文方法对于不同地形变化的点云数据均可取得良好的处理效果,信号点召回率(Recall)、精确率(Precision)及F值分别达到99.0%、99.9%、99.5%。基于参考点云的配准实验结果表明,三组光子高程点的高程中误差分别为0.960 m、0.957 m、0.872 m,优于官方提供的ATL08对照组。
中图分类号:
[1] 朱笑笑, 王成, 习晓环, 等. ICESat-2星载光子计数激光雷达数据处理与应用研究进展[J]. 红外与激光工程, 2020, 49(11): 76-85. ZHU X X, WANG C, XI X H, et al. Research progress of ICESat-2/ATLAS data processing and applications [J]. Infrared and Laser Engineering, 2020, 49(11): 76-85. [2] MONTESANO P M, ROSETTE J, SUN G, et al. The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient [J]. Remote Sensing of Environment, 2015, 158: 95-109. [3] 黄佳鹏, 邢艳秋, 秦磊, 等. ICESat-2/ATLAS数据反演林下地形精度验证[J]. 红外与激光工程, 2020, 49(11): 122-131. HUANG J P, XING Y Q, QIN L, et al. Accuracy verification of terrain under forest estimated from ICESat-2/ATLAS data [J]. Infrared and Laser Engineering, 2020, 49(11): 122-131. [4] 罗成高, 刘康, 王宏强, 等. 太赫兹单光子雷达探测技术[J]. 中国科学:物理学 力学 天文学, 2021, 51(5): 7-23. LUO C G, LIU K, WANG H Q, et al. Terahertz single-photon radar detection technology [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, 51(5): 7-23. [5] 王振华, 陈诗贤, 孔伟, 等. 光子计数激光雷达中光子点云滤波方法的比较与分析[J]. 激光与光电子学进展, 2023, 60(6): 0628001. WANG Z H, CHEN S X, KONG W, et al. Comparison and analysis of denoising for photon-counting lidar data [J]. Laser & Optoelectronics Progress, 2023, 60(6): 0628001. [6] HERZFELD U C, MCDONALD B W, WALLIN B F, et al. Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2109-2125. [7] MAGRUDER L A, WHARTON III M E, STOUT K D, et al. Noise filtering techniques for photon-counting ladar data[C] //Laser Radar Technology and Applications XVII. Baltimore: SPIE, 2012, 8379: 237-245. [8] BRUNT K M, NEUMANN T A, WALSH K M, et al. Determination of local slope on the greenland ice sheet using a multibeam photon-counting lidar in preparation for the ICESat-2 mission [J]. IEEE Geoscience and Remote Sensing Letters, 2013, 11(5): 935-939. [9] BRUNT K M, NEUMANN T A, AMUNDSON J M, et al. MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development [J]. The Cryosphere, 2016, 10(4): 1707-1719. [10] 夏少波, 王成, 习晓环, 等. ICESat-2机载试验点云滤波及植被高度反演[J]. 遥感学报, 2014, 18(06): 1199-1207. XIA S B, WANG C, XI X H, et al. Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2 [J]. Journal of Remote Sensing, 2014, 18(06): 1199-1207. [11] HERZFELD U C, TRANTOW T M, HARDING D, et al. Surface-height determination of crevassed glaciers—Mathematical principles of an autoadaptive density-dimension algorithm and validation using ICESat-2 simulator (SIMPL) data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 1874-1896. [12] 谢欢, 黄佩琪, 徐琪, 等. ICESat-2数据背景光子特性及滤波方法研究[J]. 光学精密工程, 2023, 31(5): 631-643. XIE H, HUANG P Q, XU Q, et al. Research on background photon characteristics and filtering methods for ICESat-2 data [J]. Optics and Precision Engineering, 2023, 31(5): 631-643. [13] WANG X, PAN Z, GLENNIE C. A novel noise filtering model for photon-counting laser altimeter data [J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(7): 947-951. [14] ZHANG J, KEREKES J, CSATHO B, et al. A clustering approach for detection of ground in micropulse photon-counting LiDAR altimeter data[C] //2014 IEEE Geoscience and Remote Sensing Symposium. Quebec: IEEE, 2014: 177-180. [15] 谢锋, 杨贵, 舒嵘, 等. 方向自适应的光子计数激光雷达滤波方法[J]. 红外与毫米波学报, 2017, 36(1): 107-113. XIE F, YANG G, SHU R, et al. An adaptive directional filter for photon counting Lidar point cloud data [J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 107-113. [16] ZHU X, NIE S, WANG C, et al. A ground elevation and vegetation height retrieval algorithm using micro-pulse photon-counting lidar data [J]. Remote Sensing, 2018, 10(12): 1962. [17] ZHU X, NIE S, WANG C, et al. A noise removal algorithm based on OPTICS for photon-counting LiDAR data [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(8): 1471-1475. [18] ZHANG G, XU Q, XING S, et al. A noise-removal algorithm without input parameters based on quadtree isolation for photon-counting LiDAR [J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5. [19] 张冬梅, 李敏, 徐大川, 等. K-均值问题的理论与算法综述[J]. 中国科学:数学, 2020, 50(9): 1387-1404. ZHANG D M, LI M, XU D C, et al. A survey on theory and algorithms for k-means problems [J]. Scientia Sinica Mathematica, 2020, 50(9): 1387-1404. [20] HUANG J P, XING Y Q, SHUAI Y M, et al. A novel noise filtering evaluation criterion of ICESat-2 signal photon data in forest environments [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. [21] 王密, 韦钰, 杨博, 等. ICESat-2/ATLAS 全球高程控制点提取与分析[J]. 武汉大学学报 (信息科学版) , 2021, 46(2): 184-192. WANG M, WEI Y, YANG B, et al. Extraction and analysis of global elevation control points from ICESat-2/ATLAS data [J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 184-192. [22] 戴泽源, 张立华, 张林, 等. 适用于海岛的ICESat-2高程控制点提取方法[J]. 地球信息科学学报, 2023, 25(8): 1559-1569. DAI Z Y, ZHANG L H, ZHANG L, et al. A method of island elevation control point extraction utilizing ICESAT-2 data [J]. Journal of Geo-Information Science, 2023, 25(8): 1559-1569. [23] ZHANG W, QI J, WAN P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation [J]. Remote Sensing, 2016, 8(6): 501. [24] KUI M Y, XU Y N, WANG J L, et al. Research on the adaptability of typical denoising algorithms based on ICESat-2 data [J]. Remote Sensing, 2023, 15(15): 3884. [25] 侯彬, 金尚忠, 王赟, 等. 点云配准方法在粗配准中的比较[J]. 激光与光电子学进展, 2020, 57(8): 081502. HOU B, JIN S Z, WANG Y. Comparison of point cloud registration methods in coarse registration [J]. Laser & Optoelectronics Progress, 2020, 57(8): 081502. |
[1] | 李云, 鲍鸿. 语音分组识别技术的研究[J]. 广东工业大学学报, 2014, 31(2): 54-57. |
|