广东工业大学学报 ›› 2025, Vol. 42 ›› Issue (1): 51-59.doi: 10.12052/gdutxb.230194
• 智慧医疗 • 上一篇
徐萍萍1, 黄国恒1, 赵钦2, 陈一嘉1
Xu Pingping1, Huang Guoheng1, Zhao Qin2, Chen Yijia1
摘要: 目前诊断阿尔兹海默症(Alzheimer's Disease, AD)的主要手段是通过结构磁共振成像(structural Magnetic Resonance Imaging, sMRI) 实现的,现有基于深度学习的AD诊断主要利用2D(将3D sMRI转2D切片) 或者3D的卷积神经网络,不能很好地捕获3D sMRI全局特征,为此本文提出改进Swin Transformer实现3D块划分提取全局特征,构建Transformer预测分类模型。又根据现有阿尔兹海默患者发生萎缩的区域对尺寸的变换很敏感,而且现有深度学习模型在病灶区域定位方面能力不强的问题,提出自适应特征提取模块(Adaptive Feature Extraction Module, AFEM),实现了可变形自适应特征提取,对基础3D Transformer模型进行扩展,构建AFEM-Transformer深度学习模型,进一步提升模型特征学习能力,实现自适应的定位病理区域的具体位置,用以辅助临床诊断,实现阿尔兹海默病情分类和预测。本文选择阿尔茨海默症神经影像学计划(Alzheimer's Disease Neuroimaging Initiative,ADNI)提供的2248名受试者sMRI影像作为实验数据集。在阿尔兹海默诊断任务和轻度认知障碍(Mild Cognitive Impairment, MCI) 进展预测任务中将提出的AFEM-Transformer模型与现有基于卷积神经网络的模型和基础Transformer模型进行分析比较,评估该模型的价值。结果表明本文提出的AFEM-Transformer模型在两个任务上的准确率、敏感度、特异性、AUC(Area Under Curve) 值的实验结果相较于基础和卷积神经网络模型和Transformer模型性能提升明显,证实了所提出的AFEM模块的有效性。本文提出的AFEM-Transformer深度学习模型能够准确诊断阿尔兹海默症和预测MCI的进展,并可自动定位出病灶区域,可以作为阿尔兹海默症临床诊断中一个有效的计算机辅助方法。
中图分类号:
[1] SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer's disease [J]. Lancet, 2021, 397(10284): 1577-1590. [2] LEMPRIÈRE S. New tools could improve Alzheimer disease diagnosis from structural MRI [J]. Nature Reviews Neurology, 2020, 16(6): 297-297. [3] ANTONAKAKIS M, DIMITRIADIS S I, ZERVAKIS M, et al. Aberrant whole-brain transitions and dynamics of spontaneous network microstates in mild traumatic brain injury [J]. Frontiers in Computational Neuroscience, 2019, 13: 90-90. [4] SUDHARSAN M, THAILAMBAL G. Alzheimer's disease prediction using machine learning techniques and principal component analysis (PCA) [J]. Materials Today: Proceedings, 2023, 81: 182-190. [5] DOU X, YAO H, FENG F, et al. Characterizing white matter connectivity in Alzheimer's disease and mild cognitive impairment: an automated fiber quantification analysis with two independent datasets [J]. Cortex, 2020, 129: 390-405. [6] 罗刚, 泮思林, 乔思波, 等. 深度学习技术在胎儿超声心动图图像自动识别中的应用[J]. 实用医学杂志, 2022, 38(14): 1830-1833. LUO G, PAN S L, QIAO S B, et al. Deep learning technology for automatic recognition of fetal echocardiography images [J]. The Journal of Practical Medicine, 2022, 38(14): 1830-1833. [7] 杨磊, 唐灿. 人工智能在乳腺癌超声诊断的应用价值[J]. 实用医学杂志, 2022, 38(1): 106-110. YANG L, TANG C. CAD machine diagnosis system in ultrasonic diagnosis of breast cancer [J]. The Journal of Practical Medicine, 2022, 38(1): 106-110. [8] 廖淑婷, 于向荣. 能谱CT和人工智能在甲状腺癌诊断中的应用[J]. 实用医学杂志, 2022, 38(2): 129-133. LIAO S T, YU X R. Application of spectral CT and artificial intelligence in the diagnosis of thyroid cancer [J]. The Journal of Practical Medicine, 2022, 38(2): 129-133. [9] LIU M, ZHANG J, ADELI E, et al. Landmark-based deep multi-instance learning for brain disease diagnosis [J]. Medical Image Analysis, 2018, 43: 157-168. [10] LIAN C, LIU M, ZHANG J, et al. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural mri [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 42(4): 880-893. [11] ZHU W, SUN L, HUANG J, et al. Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI [J]. IEEE Transactions on Medical Imaging, 2021, 40(9): 2354-2366. [12] 曾安, 黄殷, 潘丹, 等. 基于卷积循环神经网络的阿尔茨海默症早期诊断[J]. 生物医学工程研究, 2020, 39(3): 249-255. ZENG A, HUANG Y, PAN D, et al. Early diagnosis of Alzheimer's disease based on convolutional recurrent neural network [J]. Journal of Biomedical Engineering Research, 2020, 39(3): 249-255. [13] 王聪, 袁榕澳, 李川. 基于3D卷积神经网络的阿尔茨海默症及轻度认知功能障碍诊断[J]. 现代计算机, 2021(11): 120-123. WANG C, YUAN R A, LI C. Analysis of Alzheimer’s disease medical images based on deep machine learning [J]. Modern Computer, 2021(11): 120-123. [14] QIN Z, LIU Z, GUO Q, et al. 3D convolutional neural networks with hybrid attention mechanism for early diagnosis of Alzheimer’s disease [J]. Biomedical Signal Processing and Control, 2022, 77: 103828. [15] ZHANG J, ZHOU L, WANG L, et al. Diffusion kernel attention network for brain disorder classification [J]. IEEE Transactions on Medical Imaging, 2022, 41(10): 2814-2827. [16] 石磊, 彭少康, 张亚萌, 等. 基于特征增强金字塔网络的阿尔茨海默症早期诊断研究[J]. 数据采集与处理, 2022, 37(4): 727-735. SHI L, PENG S K, ZHANG Y M, et al. Early diagnosis of Alzheimer’s disease based on feature enhanced pyramid network [J]. Journal of Data Acquisition and Processing, 2022, 37(4): 727-735. [17] ZHANG X, HAN L, ZHU W, et al. An explainable 3D residual self-attention deep neural network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI [J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(11): 5289-5297. [18] ZHANG X, HAN L, HAN L, et al. sMRI-PatchNet: A novel efficient explainable patch-based deep learning network for Alzheimer’s disease diagnosis with structural MRI [J]. IEEE Access, 2023, 11: 108603-108616. [19] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS). New York: ACM, 2017: 6000-6010. [20] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. arXiv: 2010.11929 (2021-01-03) [2024-01-25]. https://doi.org/10.48550/arXiv.2010.11929 [21] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) . New York: IEEE, 2021: 9992-10002. [22] ZHU X, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . New York: IEEE, 2019: 9300-9308. [23] ZHU X, SU W, LU L, et al. Deformable detr: deformable transformers for end-to-end object detection[EB/OL]. arXiv: 2010.04159 (2021-03-28) [2024-01-25]. https://doi.org/10.48550/arXiv.2010. 04159 [24] CHEN Z, ZHU Y, ZHAO C, et al. DPT: deformable patch-based transformer for visual recognition[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: Association for Computing Machinery, 2021: 2899-2907. [25] XIA Z, PAN X, SONG S, et al. Vision transformer with deformable attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos: IEEE, 2022: 4784-4793. [26] JACK J C R, BERNSTEIN M A, FOX N C, et al. The Alzheimer's disease neuroimaging initiative (ADNI) : MRI methods [J]. Journal of Magnetic Resonance Imaging, 2008, 27(4): 685-691. [27] PENNY W D, FRISTON K J, ASHBURNER J T, et al. Statistical parametric mapping: the analysis of functional brain images[M]. Amsterdam: Academic Press, 2007: 1-647. [28] DING X, ZHANG X, MA N, et al. RepVGG: Making VGG-style convnets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 13728-13737. [29] PAN X, PHAN T L, ADEL M, et al. Multi-view separable pyramid network for AD prediction at MCI stage by 18 F-FDG brain PET imaging [J]. IEEE Transactions on Medical Imaging, 2020, 40(1): 81-92. [30] HUANG J, ZHOU L, WANG L, et al. Attention-diffusion-bilinear neural network for brain network analysis [J]. IEEE Transactions on Medical Imaging, 2020, 39(7): 2541-2552. |
[1] | 王彪, 钟映春, 罗唯师, 朱爽, 曾蒲军. MicroCT图像中半月板周向纤维的分割方法与三维重建[J]. 广东工业大学学报, 2025, 42(1): 42-50. |
[2] | 王盈, 蔡述庭, 熊晓明. 基于主动学习和视觉状态空间模型的热点检测器[J]. 广东工业大学学报, 2024, 41(06): 45-51. |
[3] | 罗成, 张军. 基于深度学习的自适应采样及记忆增强压缩感知方法[J]. 广东工业大学学报, 2024, 41(04): 114-121. |
[4] | 梁宇辰, 蔡念, 欧阳文生, 谢依颖, 王平. 基于切片关联信息的慢性阻塞性肺疾病CT诊断[J]. 广东工业大学学报, 2024, 41(01): 27-33. |
[5] | 吴菊华, 李俊锋, 陶雷. 基于知识图谱嵌入与深度学习的药物不良反应预测[J]. 广东工业大学学报, 2024, 41(01): 19-26,40. |
[6] | 温雯, 刘莹, 蔡瑞初, 郝志峰. 面向多粒度交通流预测的时空深度回归模型[J]. 广东工业大学学报, 2023, 40(04): 1-8. |
[7] | 钟耿君, 李东. 基于通道分离机制的双分支点云处理网络[J]. 广东工业大学学报, 2023, 40(04): 18-23. |
[8] | 金宇凯, 李志生, 欧耀春, 张华刚, 曾江毅, 陈搏超. 基于多阶段聚类的PM2.5质量浓度预测及对比研究[J]. 广东工业大学学报, 2023, 40(03): 17-24. |
[9] | 吴俊贤, 何元烈. 基于通道注意力的自监督深度估计方法[J]. 广东工业大学学报, 2023, 40(02): 22-29. |
[10] | 刘冬宁, 王子奇, 曾艳姣, 文福燕, 王洋. 基于复合编码特征LSTM的基因甲基化位点预测方法[J]. 广东工业大学学报, 2023, 40(01): 1-9. |
[11] | 徐伟锋, 蔡述庭, 熊晓明. 基于深度特征的单目视觉惯导里程计[J]. 广东工业大学学报, 2023, 40(01): 56-60,76. |
[12] | 刘洪伟, 林伟振, 温展明, 陈燕君, 易闽琦. 基于MABM的消费者情感倾向识别模型——以电影评论为例[J]. 广东工业大学学报, 2022, 39(06): 1-9. |
[13] | 章云, 王晓东. 基于受限样本的深度学习综述与思考[J]. 广东工业大学学报, 2022, 39(05): 1-8. |
[14] | 郑佳碧, 杨振国, 刘文印. 基于细粒度混杂平衡的营销效果评估方法[J]. 广东工业大学学报, 2022, 39(02): 55-61. |
[15] | Gary Yen, 栗波, 谢胜利. 地球流体动力学模型恢复的长短期记忆网络渐进优化方法[J]. 广东工业大学学报, 2021, 38(06): 1-8. |
|