广东工业大学学报 ›› 2025, Vol. 42 ›› Issue (1): 79-86.doi: 10.12052/gdutxb.240067
• 智慧医疗 • 上一篇
温超尧, 王子琦, 向楚阳, 刘明杰, 谭帼馨
Wen Chaoyao, Wang Ziqi, Xiang Chuyang, Liu Mingjie, Tan Guoxin
摘要: 近年来,导电水凝胶在柔性可穿戴传感器领域备受关注。然而,传统的基于导电水凝胶的传感器机械性能不足,严重限制了其在柔性传感器中的应用,因此,提高导电水凝胶的机械性能对于柔性传感应用至关重要。本文选择聚乙烯醇(Polyvinyl Alcohol, PVA)和聚乙烯亚胺(Polyetherimide, PEI)水凝胶作为基体材料,并使用硫酸钠溶液作为溶剂。通过应用定向冷冻技术和盐析效应,成功制备了聚乙烯醇/聚乙烯亚胺–硫酸钠(PVA/PEI-Na2SO4)水凝胶,展现出优异的力学性能。在定向冷冻过程中,PVA/PEI水凝胶中的聚合物链沿冰晶生长方向有序排列,形成的有序结构提高了水凝胶的机械性能。通过将水凝胶浸入Na2SO4溶液,利用盐析效应,增加了水凝胶网络结构的密度,进一步增强了其力学性能,并赋予水凝胶离子导电能力。结果表明,PVA/PEI- Na2SO4水凝胶具有高抗压强度(5.98 MPa),并表现出优异的力电响应性能:在100次外力负载–卸载循环中输出稳定的电信号。本研究构建的PVA/PEI- Na2SO4水凝胶在柔性传感和手指肌力锻炼等领域具有潜在的应用前景。
中图分类号:
[1] BEK J, GOWEN E, VOGT S, et al. Observation and imitation of object-directed hand movements in Parkinson’s disease[J]. Scientific Reports, 2023, 13(1): 18749. [2] ISLAM A, ALCOCK L, NAZARPOUR K, et al. Effect of Parkinson’s disease and two therapeutic interventions on muscle activity during walking: a systematic review[J]. npj Parkinson’s Disease, 2020, 6(1): 22. [3] FADIL R, HUETHER A X A, SADEGHIAN F, et al. The effect of skeletal muscle-pump on blood pressure and postural control in Parkinson’s disease[J]. Cardiovascular Engineering and Technology, 2023, 14(6): 755-773. [4] HUANG Y Z, CHANG F Y, LIU W C, et al. Fatigue and muscle strength involving walking speed in Parkinson’s disease: insights for developing rehabilitation strategy for PD[J]. Neural Plasticity, 2017, 2017: 1-9. [5] VEDADGHAVAMI A, MINOOEI F, MOHAMMADI M H, et al. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications[J]. Acta Biomaterialia, 2017, 62: 42-63. [6] NING X J, HUANG J N, A Y H, et al. Research advances in mechanical properties and applications of dual network hydrogels[J]. International Journal of Molecular Sciences, 2022, 23(24): 15757. [7] HUANG L, ZENG R, XU J, et al. Point-of-care immunoassay based on a multipixel dual-channel pressure sensor array with visual sensing capability of full-color switching and reliable electrical signals[J]. Analytical Chemistry, 2022, 94(38): 13278-13286. [8] XUE X, HU Y, DENG Y, et al. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering[J]. Advanced Functional Materials, 2021, 31(19): 2009432. [9] LONG R, HUI C Y. Fracture toughness of hydrogels: measurement and interpretation[J]. Soft Matter, 2016, 12(39): 8069-8086. [10] FU J, IN HET PANHUIS M. Hydrogel properties and applications[J]. Journal of Materials Chemistry B, 2019, 7(10): 1523-1525. [11] ZHANG Y S, KHADEMHOSSEINI A. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): eaaf3627. [12] WANG Y, XIE Y, XIE X, et al. Compliant and robust tissue-like hydrogels via ferric ion-induced of hierarchical structure[J]. Advanced Functional Materials, 2023, 33(12): 2210224. [13] MATSUDA T, KAWAKAMI R, NAMBA R, et al. Mechanoresponsive self-growing hydrogels inspired by muscle training[J]. Science, 2019, 363(6426): 504-508. [14] YETISKIN B, OKAY O. High-strength and self-recoverable silk fibroin cryogels with anisotropic swelling and mechanical properties[J]. International Journal of Biological Macromolecules, 2019, 122: 1279-1289. [15] WU L, KANG Y, SHI X, et al. Natural-wood-inspired ultrastrong anisotropic hybrid hydrogels targeting artificial tendons or ligaments[J]. ACS Nano, 2023, 17(14): 13522-13532. [16] WANG L, XU T, ZHANG X. Multifunctional conductive hydrogel-based flexible wearable sensors[J]. TrAC Trends in Analytical Chemistry, 2021, 134: 116130. [17] CUI J, CHEN J, NI Z, et al. High-sensitivity flexible sensor based on biomimetic strain-stiffening hydrogel[J]. ACS Applied Materials & Interfaces, 2022, 14(41): 47148-47156. [18] ALEID S, WU M, LI R, et al. Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting[J]. ACS Materials Letters, 2022, 4(3): 511-520. [19] HUA M, WU S, MA Y, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out[J]. Nature, 2021, 590(7847): 594-599. [20] CUI W, ZHENG Y, ZHU R, et al. Strong tough conductive hydrogels via the synergy of ion-induced cross-linking and salting-out[J]. Advanced Functional Materials, 2022, 32(39): 2204823. [21] YE Z, CHI T, EVANS C J, et al. Implications of Supramolecular crosslinking on hydrogel toughening by directional freeze-casting and salting-out [J]. Advanced Functional Materials, 2024 : 2402613. [22] FENG X, XING C, WANG C, et al. Degradable, anti-swelling, high-strength cellulosic hydrogels via salting-out and ionic coordination[J]. International Journal of Biological Macromolecules, 2024, 267: 131536. [23] WU S, HUA M, ALSAID Y, et al. Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect[J]. Advanced Materials, 2021, 33(11): 2007829. [24] ZHANG L, WANG K, WENG S, et al. Super strong and tough anisotropic hydrogels through synergy of directional freeze-casting, metal complexation and salting out[J]. Chemical Engineering Journal, 2023, 463: 142414. [25] DONG X, GUO X, LIU Q, et al. Strong and tough conductive organo-hydrogels via freeze-casting assisted solution substitution[J]. Advanced Functional Materials, 2022, 32(31): 2203610. [26] XIANG S. Hierarchical structural double network hydrogel with high strength, toughness, and good recoverability[J]. New Journal of Chemistry, 2017, 41(23): 14397-14402. [27] REN J, DAI Q, ZHONG H, et al. Quaternized xylan/cellulose nanocrystal reinforced magnetic hydrogels with high strength[J]. Cellulose, 2018, 25(8): 4537-4549. [28] WANG S, LI K, ZHOU Q. High strength and low swelling composite hydrogels from gelatin and delignified wood[J]. Scientific Reports, 2020, 10(1): 17842. [29] WU L, MAO G, NIAN G, et al. Mechanical characterization and modeling of sponge-reinforced hydrogel composites under compression[J]. Soft Matter, 2018, 14(21): 4355-4363. [30] HARRASS K, KRÜGER R, MÖLLER M, et al. Mechanically strong hydrogels with reversible behaviour under cyclic compression with MPa loading[J]. Soft Matter, 2013, 9(10): 2869. [31] AWASTHI S, GAUR J K, PANDEY S K, et al. High-strength, strongly bonded nanocomposite hydrogels for cartilage repair[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24505-24523. [32] KANG B, LANG Q, TU J, et al. Preparation and properties of double network hydrogel with high compressive strength[J]. Polymers, 2022, 14(5): 966-966. [33] FU R. A stretchable, biocompatible, and self-powered hydrogel multichannel wireless sensor system based on piezoelectric barium titanate nanoparticles for health monitoring[J]. Nano Energy, 2023, 114: 108617. [34] YU G, ZHANG Y, WANG Q, et al. Wearable and flexible hydrogels for strain sensing and wound electrical stimulation[J]. Industrial & Engineering Chemistry Research, 2023, 62(13): 5468-5481. |
[1] | 谭帼馨1 , 阮雄杰1 , 宁成云2 , 霍延平1 , 陈 荣1 , 廖景文1. PEGDA/NIPAM 共聚物水凝胶的溶胀性能及体积相变研究[J]. 广东工业大学学报, 2010, 27(3): 5-8. |
[2] | 赖子尼; 崔英德; 梁灿强; 王帅; . PVA-SA-PLA复合水凝胶的制备及铵离子扩散性能[J]. 广东工业大学学报, 2009, 26(3): 1-4. |
[3] | 吴炜亮; 吴国杰; 赖国柱; . 聚乙烯醇—壳聚糖水凝胶机械性能的研究[J]. 广东工业大学学报, 2006, 23(4): 105-109. |
[4] | 吴国杰; 吴炜亮; 李金蔓; 周家华; 崔英德; . 聚乙烯醇-壳聚糖水凝胶制备与溶胀行为的研究[J]. 广东工业大学学报, 2006, 23(3): 16-20. |
[5] | 吴国杰; 李金蔓; 王富华; 崔英德; 易国斌; . 聚醚-壳聚糖水凝胶溶胀性能的研究[J]. 广东工业大学学报, 2005, 22(4): 1-5. |
[6] | 蔡立彬; 刘正堂; 崔英德; 黎少秋; 张小红; . 含有机硅共聚物水凝胶合成及其透氧性能研究[J]. 广东工业大学学报, 2005, 22(3): 7-10. |
[7] | 黎新明; 崔英德; . 单体配比对水凝胶接触镜材料溶胀性能的影响[J]. 广东工业大学学报, 2003, 20(1): 11-15. |
|