广东工业大学学报 ›› 2025, Vol. 42 ›› Issue (1): 79-86.doi: 10.12052/gdutxb.240067

• 智慧医疗 • 上一篇    

高强韧导电水凝胶的制备及传感性能研究

温超尧, 王子琦, 向楚阳, 刘明杰, 谭帼馨   

  1. 广东工业大学 轻工化工学院, 广东 广州 510006
  • 收稿日期:2024-05-20 发布日期:2025-01-14
  • 通信作者: 谭帼馨(1971–),女,教授,博士,主要研究方向为生物材料,E-mail:tanguoxin@126.com
  • 作者简介:温超尧(1996–),男,硕士研究生,主要研究方向为水凝胶生物材料,E-mail:wenchaoyaon@163.com
  • 基金资助:
    国家自然科学基金资助项目(51932002);广东省自然科学基金资助项目(2023A1515011039)

Preparation and Sensing Properties of Highly Robust Conductive Hydrogels

Wen Chaoyao, Wang Ziqi, Xiang Chuyang, Liu Mingjie, Tan Guoxin   

  1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2024-05-20 Published:2025-01-14

摘要: 近年来,导电水凝胶在柔性可穿戴传感器领域备受关注。然而,传统的基于导电水凝胶的传感器机械性能不足,严重限制了其在柔性传感器中的应用,因此,提高导电水凝胶的机械性能对于柔性传感应用至关重要。本文选择聚乙烯醇(Polyvinyl Alcohol, PVA)和聚乙烯亚胺(Polyetherimide, PEI)水凝胶作为基体材料,并使用硫酸钠溶液作为溶剂。通过应用定向冷冻技术和盐析效应,成功制备了聚乙烯醇/聚乙烯亚胺–硫酸钠(PVA/PEI-Na2SO4)水凝胶,展现出优异的力学性能。在定向冷冻过程中,PVA/PEI水凝胶中的聚合物链沿冰晶生长方向有序排列,形成的有序结构提高了水凝胶的机械性能。通过将水凝胶浸入Na2SO4溶液,利用盐析效应,增加了水凝胶网络结构的密度,进一步增强了其力学性能,并赋予水凝胶离子导电能力。结果表明,PVA/PEI- Na2SO4水凝胶具有高抗压强度(5.98 MPa),并表现出优异的力电响应性能:在100次外力负载–卸载循环中输出稳定的电信号。本研究构建的PVA/PEI- Na2SO4水凝胶在柔性传感和手指肌力锻炼等领域具有潜在的应用前景。

关键词: 水凝胶, 聚乙烯醇/聚乙烯亚胺, 导电性能, 柔性传感器

Abstract: In recent years, conductive hydrogels have attracted significant attention in the field of flexible wearable sensors. However, traditional conductive hydrogel-based sensors suffer from insufficient mechanical properties, severely limiting their application in flexible sensors. Therefore, enhancing the mechanical properties of conductive hydrogels is essential for flexible sensing applications. Poly(vinyl alcohol) /poly(ethyleneimine) -sodium sulfate (PVA/PEI-Na2SO4) hydrogels were successfully prepared using the directional freezing technique and salting-out effect, showing excellent mechanical properties. During the directional freezing process, the polymer chains in the PVA/PEI hydrogels were arranged orderly along the ice crystal growth direction. This ordered structure improved the mechanical properties of the hydrogels. By immersing the hydrogel in a sodium sulfate solution, the density of the hydrogel network structure increased through the salting-out effect, further enhancing its mechanical properties and endowing the hydrogel with ionic conductivity. The results demonstrated that the PVA/PEI-Na2SO4 hydrogel exhibited high compressive strength (5.98 MPa) and excellent force-electrical response properties, with stable electrical signals output during 100 external load-unload cycles. The PVA/PEI-Na2SO4 hydrogel developed in this study has potential applications in flexible sensing and finger muscle rehabilitation.

Key words: hydrogel, polyvinyl alcohol/polyethyleneimine, conductivity, flexible sensor

中图分类号: 

  • R605
[1] BEK J, GOWEN E, VOGT S, et al. Observation and imitation of object-directed hand movements in Parkinson’s disease[J]. Scientific Reports, 2023, 13(1): 18749.
[2] ISLAM A, ALCOCK L, NAZARPOUR K, et al. Effect of Parkinson’s disease and two therapeutic interventions on muscle activity during walking: a systematic review[J]. npj Parkinson’s Disease, 2020, 6(1): 22.
[3] FADIL R, HUETHER A X A, SADEGHIAN F, et al. The effect of skeletal muscle-pump on blood pressure and postural control in Parkinson’s disease[J]. Cardiovascular Engineering and Technology, 2023, 14(6): 755-773.
[4] HUANG Y Z, CHANG F Y, LIU W C, et al. Fatigue and muscle strength involving walking speed in Parkinson’s disease: insights for developing rehabilitation strategy for PD[J]. Neural Plasticity, 2017, 2017: 1-9.
[5] VEDADGHAVAMI A, MINOOEI F, MOHAMMADI M H, et al. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications[J]. Acta Biomaterialia, 2017, 62: 42-63.
[6] NING X J, HUANG J N, A Y H, et al. Research advances in mechanical properties and applications of dual network hydrogels[J]. International Journal of Molecular Sciences, 2022, 23(24): 15757.
[7] HUANG L, ZENG R, XU J, et al. Point-of-care immunoassay based on a multipixel dual-channel pressure sensor array with visual sensing capability of full-color switching and reliable electrical signals[J]. Analytical Chemistry, 2022, 94(38): 13278-13286.
[8] XUE X, HU Y, DENG Y, et al. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering[J]. Advanced Functional Materials, 2021, 31(19): 2009432.
[9] LONG R, HUI C Y. Fracture toughness of hydrogels: measurement and interpretation[J]. Soft Matter, 2016, 12(39): 8069-8086.
[10] FU J, IN HET PANHUIS M. Hydrogel properties and applications[J]. Journal of Materials Chemistry B, 2019, 7(10): 1523-1525.
[11] ZHANG Y S, KHADEMHOSSEINI A. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): eaaf3627.
[12] WANG Y, XIE Y, XIE X, et al. Compliant and robust tissue-like hydrogels via ferric ion-induced of hierarchical structure[J]. Advanced Functional Materials, 2023, 33(12): 2210224.
[13] MATSUDA T, KAWAKAMI R, NAMBA R, et al. Mechanoresponsive self-growing hydrogels inspired by muscle training[J]. Science, 2019, 363(6426): 504-508.
[14] YETISKIN B, OKAY O. High-strength and self-recoverable silk fibroin cryogels with anisotropic swelling and mechanical properties[J]. International Journal of Biological Macromolecules, 2019, 122: 1279-1289.
[15] WU L, KANG Y, SHI X, et al. Natural-wood-inspired ultrastrong anisotropic hybrid hydrogels targeting artificial tendons or ligaments[J]. ACS Nano, 2023, 17(14): 13522-13532.
[16] WANG L, XU T, ZHANG X. Multifunctional conductive hydrogel-based flexible wearable sensors[J]. TrAC Trends in Analytical Chemistry, 2021, 134: 116130.
[17] CUI J, CHEN J, NI Z, et al. High-sensitivity flexible sensor based on biomimetic strain-stiffening hydrogel[J]. ACS Applied Materials & Interfaces, 2022, 14(41): 47148-47156.
[18] ALEID S, WU M, LI R, et al. Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting[J]. ACS Materials Letters, 2022, 4(3): 511-520.
[19] HUA M, WU S, MA Y, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out[J]. Nature, 2021, 590(7847): 594-599.
[20] CUI W, ZHENG Y, ZHU R, et al. Strong tough conductive hydrogels via the synergy of ion-induced cross-linking and salting-out[J]. Advanced Functional Materials, 2022, 32(39): 2204823.
[21] YE Z, CHI T, EVANS C J, et al. Implications of Supramolecular crosslinking on hydrogel toughening by directional freeze-casting and salting-out [J]. Advanced Functional Materials, 2024 : 2402613.
[22] FENG X, XING C, WANG C, et al. Degradable, anti-swelling, high-strength cellulosic hydrogels via salting-out and ionic coordination[J]. International Journal of Biological Macromolecules, 2024, 267: 131536.
[23] WU S, HUA M, ALSAID Y, et al. Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect[J]. Advanced Materials, 2021, 33(11): 2007829.
[24] ZHANG L, WANG K, WENG S, et al. Super strong and tough anisotropic hydrogels through synergy of directional freeze-casting, metal complexation and salting out[J]. Chemical Engineering Journal, 2023, 463: 142414.
[25] DONG X, GUO X, LIU Q, et al. Strong and tough conductive organo-hydrogels via freeze-casting assisted solution substitution[J]. Advanced Functional Materials, 2022, 32(31): 2203610.
[26] XIANG S. Hierarchical structural double network hydrogel with high strength, toughness, and good recoverability[J]. New Journal of Chemistry, 2017, 41(23): 14397-14402.
[27] REN J, DAI Q, ZHONG H, et al. Quaternized xylan/cellulose nanocrystal reinforced magnetic hydrogels with high strength[J]. Cellulose, 2018, 25(8): 4537-4549.
[28] WANG S, LI K, ZHOU Q. High strength and low swelling composite hydrogels from gelatin and delignified wood[J]. Scientific Reports, 2020, 10(1): 17842.
[29] WU L, MAO G, NIAN G, et al. Mechanical characterization and modeling of sponge-reinforced hydrogel composites under compression[J]. Soft Matter, 2018, 14(21): 4355-4363.
[30] HARRASS K, KRÜGER R, MÖLLER M, et al. Mechanically strong hydrogels with reversible behaviour under cyclic compression with MPa loading[J]. Soft Matter, 2013, 9(10): 2869.
[31] AWASTHI S, GAUR J K, PANDEY S K, et al. High-strength, strongly bonded nanocomposite hydrogels for cartilage repair[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24505-24523.
[32] KANG B, LANG Q, TU J, et al. Preparation and properties of double network hydrogel with high compressive strength[J]. Polymers, 2022, 14(5): 966-966.
[33] FU R. A stretchable, biocompatible, and self-powered hydrogel multichannel wireless sensor system based on piezoelectric barium titanate nanoparticles for health monitoring[J]. Nano Energy, 2023, 114: 108617.
[34] YU G, ZHANG Y, WANG Q, et al. Wearable and flexible hydrogels for strain sensing and wound electrical stimulation[J]. Industrial & Engineering Chemistry Research, 2023, 62(13): 5468-5481.
[1] 谭帼馨1 , 阮雄杰1 , 宁成云2 , 霍延平1 , 陈 荣1 , 廖景文1. PEGDA/NIPAM 共聚物水凝胶的溶胀性能及体积相变研究[J]. 广东工业大学学报, 2010, 27(3): 5-8.
[2] 赖子尼; 崔英德; 梁灿强; 王帅; . PVA-SA-PLA复合水凝胶的制备及铵离子扩散性能[J]. 广东工业大学学报, 2009, 26(3): 1-4.
[3] 吴炜亮; 吴国杰; 赖国柱; . 聚乙烯醇—壳聚糖水凝胶机械性能的研究[J]. 广东工业大学学报, 2006, 23(4): 105-109.
[4] 吴国杰; 吴炜亮; 李金蔓; 周家华; 崔英德; . 聚乙烯醇-壳聚糖水凝胶制备与溶胀行为的研究[J]. 广东工业大学学报, 2006, 23(3): 16-20.
[5] 吴国杰; 李金蔓; 王富华; 崔英德; 易国斌; . 聚醚-壳聚糖水凝胶溶胀性能的研究[J]. 广东工业大学学报, 2005, 22(4): 1-5.
[6] 蔡立彬; 刘正堂; 崔英德; 黎少秋; 张小红; . 含有机硅共聚物水凝胶合成及其透氧性能研究[J]. 广东工业大学学报, 2005, 22(3): 7-10.
[7] 黎新明; 崔英德; . 单体配比对水凝胶接触镜材料溶胀性能的影响[J]. 广东工业大学学报, 2003, 20(1): 11-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!