广东工业大学学报 ›› 2025, Vol. 42 ›› Issue (01): 1-14.doi: 10.12052/gdutxb.240167
• 特约综述 • 下一篇
王超1,2, 程中文1, 吴俊伟1, 文学1, 陈燕1, 曾吕明1, 纪轩荣1
Wang Chao1,2, Cheng Zhongwen1, Wu Junwei1, Wen Xue1, Chen Yan1, Zeng Lyuming1, Ji Xuanrong1
摘要: 超声换能器作为生物医学超声系统的核心部件,其性能直接决定诊断和治疗效果。近年来,随着生物医学技术的发展,对高性能超声换能器的需求日益增长。本文综述了新型超声换能器在生物医学领域的最新研究进展,分析了小型、非接触空气耦合、透明、柔性、高频阵列以及低功率等不同类型超声换能器的性能特点,探讨了其在生物医学成像、治疗和神经调控等方面的应用前景,并总结了当前面临的挑战,包括换能器声功能材料选择、结构优化以及应用场景多元化等。未来研究应聚焦于新型声功能材料的开发、高性能换能器设计以及跨学科合作,以推动超声换能器技术更好地服务于生物医学应用。
中图分类号:
[1] LI F, LIN D, CHEN Z, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nature Materials, 2018, 17(4): 349-354. [2] LI F, ZHANG S, YANG T, et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals[J]. Nature Communications, 2016, 7(1): 13807. [3] PAN H, LI F, LIU Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design[J]. Science, 2019, 365(6453): 578-582. [4] LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb (Mg1/3Nb2/3) O3-PbTiO3 single crystals[J]. Science, 2019, 364(6437): 264-268. [5] CHEN Z, LI F, HUANG Q, et al. Giant tuning of ferroelectricity in single crystals by thickness engineering[J]. Science Advances, 2020, 6(42): eabc7156. [6] WANG H, CHEN Z, YANG H, et al. A ceramic PZT-based PMUT array for endoscopic photoacoustic imaging[J]. Journal of Microelectromechanical Systems, 2020, 29(5): 1038-1043. [7] WANG J, ZHENG Z, CHAN J, et al. Capacitive micromachined ultrasound transducers for intravascular ultrasound imaging[J]. Microsystems & Nanoengineering, 2020, 6(1): 73. [8] JUNG J, LEE W, KANG W, et al. Review of piezoelectric micromachined ultrasonic transducers and their applications[J]. Journal of Micromechanics and Microengineering, 2017, 27(11): 113001. [9] QIU Y, GIGLIOTTI J V, WALLACE M, et al. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging[J]. Sensors, 2015, 15(4): 8020-8041. [10] LI T, CHEN Y, MA J. Development of a miniaturized piezoelectric ultrasonic transducer[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(3): 649-659. [11] CHENG X, CHEN J, LI C. A miniature capacitive micromachined ultrasonic transducer array for minimally invasive photoacoustic imaging[J]. Journal of Microelectromechanical Systems, 2010, 19(4): 1002-1011. [12] FLEISCHMAN A, MODI R, NAIR A, et al. Miniature high frequency focused ultrasonic transducers for minimally invasive imaging procedures[J]. Sensors and Actuators A: Physical, 2003, 103(1-2): 76-82. [13] ATAR S, LUO H, NAGAI T, et al. Ultrasonic thrombolysis: catheter-delivered and transcutaneous applications[J]. European Journal of Ultrasound, 1999, 9(1): 39-54. [14] YASUI A, HAGA Y, CHEN J J, et al. Focused ultrasonic transducer for localized sonodynamic therapy[C]// The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Seoul: IEEE, 2005: 1660-1663. [15] MAIONE E, SHUNG K K, MEYER R J, et al. Transducer design for a portable ultrasound enhanced transdermal drug-delivery system[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2002, 49(10): 1430-1436. [16] YASUI A, HAGA Y, CHEN J, et al. Focused ultrasonic device for sonodynamic therapy in the human body[C]//2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology. Oahu, HI: IEEE, 2005: 154-157. [17] SNOOK K A, ZHAO J Z, ALVES C H, et al. Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2002, 49(2): 169-176. [18] LI X, WU W, CHUNG Y, et al. 80-MHz intravascular ultrasound transducer using PMN-PT free-standing film[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2011, 58(11): 2281-2288. [19] CHEN W, WANG B, CHEN J, et al. Development of a high-frequency mini-convex array probe for intraluminal ultrasonic imaging applications[J]. IEEE Sensors Journal, 2024(11): 24. [20] 吕圣苗, 王振常, 蔡杰, 等. 用于血管内成像的 60 MHz 高频超声换能器设计及其成像实验[J]. 集成技术, 2022, 11(5): 34-44. LYU S M, WANG Z C, CAI J, et al. 60 MHz high frequency intravascular ultrasound transducer and in vivo imaging[J]. Journal of Integration Technology, 2022, 11(5): 34-44. [21] HE H, BUEHLER A, BOZHKO D, et al. Importance of ultrawide bandwidth for optoacoustic esophagus imaging[J]. IEEE Transactions on Medical Imaging, 2017, 37(5): 1162-1167. [22] JI X, XIONG K, YANG S, et al. Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer[J]. Optics Express, 2015, 23(7): 9130-9136. [23] ZHANG J, YANG S, JI X, et al. Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation[J]. Journal of the American College of Cardiology, 2014, 64(4): 385-390. [24] WANG X, SEETOHUL V, CHEN R, et al. Development of a mechanical scanning device with high-frequency ultrasound transducer for ultrasonic capsule endoscopy[J]. IEEE Transactions on Medical Imaging, 2017, 36(9): 1922-1929. [25] JIAO Y, CUI Y, WU J, et al. A shear wave endoscopic elasticity imaging approach with micro focused piezoelectric transducer[C]//2017 IEEE International Ultrasonics Symposium (IUS) . Washington, DC: IEEE, 2017: 1-4. [26] CHIMENTI D. Review of air-coupled ultrasonic materials characterization[J]. Ultrasonics, 2014, 54(7): 1804-1816. [27] GINEL A M, ÁLVAREZ-ARENAS T G. Air-coupled transducers for quality control in the food industry[C]//2019 IEEE International Ultrasonics Symposium (IUS) . Glasgow: IEEE, 2019: 803-806. [28] RATHOD V T. A review of acoustic impedance matching techniques for piezoelectric sensors and transducers[J]. Sensors, 2020, 20(14): 4051. [29] ZHOU J, BAI J, LIU Y. Fabrication and modeling of matching system for air-coupled transducer[J]. Micromachines, 2022, 13(5): 781. [30] BLUM F, JARZYNSKI J, JACOBS L J. A focused two-dimensional air-coupled ultrasonic array for non-contact generation[J]. NDT & E International, 2005, 38(8): 634-642. [31] WANG C, GAO H, ZHOU X, et al. Design, fabrication, and characterization of 1-3 piezoelectric composite air-coupled ultrasonic transducers with micro-membrane filter matching layer [J]. Sensors and Actuators A: Physical, 2024: 115955. [32] JAE LEE H, ZHANG S, MEYER R J, et al. Characterization of piezoelectric ceramics and 1-3 composites for high power transducers[J]. Applied Physics Letters, 2012, 101(3): 032902. [33] MANBACHI A, COBBOLD R S. Development and application of piezoelectric materials for ultrasound generation and detection[J]. Ultrasound, 2011, 19(4): 187-196. [34] YANG Y, ZHU K, SUN E, et al. Ultrabroad-bandwidth ultrasonic transducer based on Sm-doped PMN-PT ceramic/epoxy 1-3 composite[J]. Sensors and Actuators A: Physical, 2022, 346: 113873. [35] ZHOU X, MA W, GAO H, et al. Air-coupled ultrasonic transducer based on lead-free piezoceramics prepared by digital light processing 3D printing[J]. Ultrasonics, 2024, 143: 107429. [36] MA H, XIONG K, WU J, et al. Noncontact photoacoustic angiography with an air-coupled ultrasonic transducer for evaluation of burn injury[J]. Applied Physics Letters, 2019, 114(13): 133701. [37] DEáN-BEN X L, PANG G A, MONTERO DE ESPINOSA F, et al. Non-contact optoacoustic imaging with focused air-coupled transducers[J]. Applied Physics Letters, 2015, 107(5): 051105. [38] LANDA F J O, DEáN-BEN X L, MONTERO DE ESPINOSA F, et al. Noncontact monitoring of incision depth in laser surgery with air-coupled ultrasound transducers[J]. Optics Letters, 2016, 41(12): 2704-2707. [39] QIU C, ZHANG Z, XU Z, et al. Transparent ultrasonic transducers based on relaxor ferroelectric crystals for advanced photoacoustic imaging[J]. Nature Communications, 2024, 15(1): 1-14. [40] QIU C, WANG B, ZHANG N, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity[J]. Nature, 2020, 577(7790): 350-354. [41] CHO S, KIM M, AHN J, et al. An ultrasensitive and broadband transparent ultrasound transducer for ultrasound and photoacoustic imaging in-vivo[J]. Nature Communications, 2024, 15(1): 1444. [42] 何勇, 廖唐云, 吴俊伟, 等. 基于透明超声换能器的光声显微镜设计[J]. 中国激光, 2022, 49(3): 98-104 HE Y, LIAO T Y, WU J W, et al. Design of photoacoustic microscope based on transparent ultrasonic transducer[J]. Chinese Journal of Lasers, 2022, 49(3): 98-104. [43] LIAO T, LIU Y, WU J, et al. Centimeter-scale wide-field-of-view laser-scanning photoacoustic microscopy for subcutaneous microvasculature in vivo[J]. Biomedical Optics Express, 2021, 12(5): 2996-3007. [44] KIM D, PARK E, PARK J, et al. An ultraviolet-transparent ultrasound transducer enables high-resolution label‐free photoacoustic histopathology[J]. Laser & Photonics Reviews, 2024, 18(2): 2300652. [45] PARK J, PARK B, KIM T Y, et al. Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(11): e1920879118. [46] XUE X, WU H, CAI Q, et al. Flexible ultrasonic transducers for wearable biomedical applications: a review on advanced materials, structural designs, and future prospects[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2024, 71(7): 786-810. [47] CHEN J, LIU J, CHEN W, et al. Skin-conformable flexible and stretchable ultrasound transducer for wearable imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2024, 71(7): 811-820. [48] CHEN W, LIU J, LEI S, et al. Flexible ultrasound transducer with embedded optical shape sensing fiber for biomedical imaging applications[J]. IEEE Transactions on Biomedical Engineering, 2023, 70(10): 2841-2851. [49] KIM T, CUI Z, CHANG W Y, et al. Flexible 1-3 composite ultrasound transducers with silver-nanowire-based stretchable electrodes[J]. IEEE Transactions on Industrial Electronics, 2019, 67(8): 6955-6962. [50] 李尧, 夏子颐, 李晓兵, 等. 柔性无损检测超声线阵换能器的仿真研究[J]. 建模与仿真, 2024, 13(3): 2223-2232. LI Y, XIA Z Y, LI X B, et al. Simulation study on flexible non-destructive testing of ultrasonic linear array transducers[J]. Modeling and Simulation, 2024, 13(3): 2223-2232. [51] HU H, ZHU X, WANG C, et al. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces[J]. Science Advances, 2018, 4(3): eaar3979. [52] DE OLIVEIRA T F, PAI C N, MATUDA M Y, et al. Development of a 2.25 MHz flexible array ultrasonic transducer[J]. Research on Biomedical Engineering, 2019, 35: 27-37. [53] ZHOU S, GAO X, PARK G, et al. Transcranial volumetric imaging using a conformal ultrasound patch[J]. Nature, 2024, 629(8013): 810-818. [54] LEE J H, CHO I J, KO K, et al. Flexible piezoelectric micromachined ultrasonic transducer (pMUT) for application in brain stimulation[J]. Microsystem Technologies, 2017, 23: 2321-2328. [55] LYU W, MA Y, CHEN S, et al. Flexible ultrasonic patch for accelerating chronic wound healing[J]. Advanced Healthcare Materials, 2021, 10(19): 2100785. [56] PENG C, CHEN M, SIM H K, et al. Noninvasive and nonocclusive blood pressure monitoring via a flexible piezo-composite ultrasonic sensor[J]. IEEE Sensors Journal, 2020, 21(3): 2642-2650. [57] WANG X, JI Z, YANG S, et al. Morphological-adaptive photoacoustic tomography with flexible transducer and flexible orientation light[J]. Optics Letters, 2017, 42(21): 4486-4489. [58] CHEN J, FEI C, LIN D, et al. A review of ultrahigh frequency ultrasonic transducers[J]. Frontiers in Materials, 2022, 8: 733358. [59] 王嘉程, 王丽坤, 仲超. 1-3 型压电复合材料研究进展[J]. 电子元件与材料, 2021, 40(3): 219-228 WANG J C, WANG L K, ZHONG C. Recent advance in 1-3 piezoelectric composites[J]. Electron Compon Mater, 2021, 40(3): 219-228. [60] 史新旺, 冯炼, 周小伟. 基于凸阵列超声换能器的宽波束成像算法研究 [J]. 中国生物医学工程学报, 2024, 43(3): 278-285. SHI X W, FENG L, ZHOU X W. Implementation of wide-beam ultrasound imaging based on a convex transducer [J]. Chinese Journal of Biomedical Engineering, 2024, 43(3): 278-285. [61] 孔凡国, 陈然然, 段文科. 高频医用超声换能器的研究现状及发展趋势[J]. 功能材料与器件学报, 2015(5): 133-138. KONG F G, CHEN R R, DUAN W K. Research status and development trend of high-frequency medical ultrasonic transducer[J]. Journal of Functional Materials and Devices, 2015(5): 133-138. [62] LEI Z, XU G, LIU J, et al. Low-stress ultrafast laser micromachining for high-frequency pmn-pt/epoxy composite transducers[J]. IEEE Sensors Journal, 2024, 24(5): 5873-5884. [63] 田俊亭, 李晓兵, 丁伟艳, 等. 软模板法制备高频超声换能器用 1-3 复合压电材料[J]. Journal of Inorganic Materials, 2022, 37(5): 507-512. TIAN J T, LI X B, DING W Y, et al. Fabrication of 1-3 piezocomposites via soft mold method for high-frequency ultrasound transducer[J]. Journal of Inorganic Materials, 2022, 37(5): 507-512. [64] ROA C F, CHéRIN E, SINGH N, et al. Development of a small-footprint 50 mhz linear array: fabrication and micro-ultrasound imaging demonstration[J]. Sensors, 2024, 24(6): 1847. [65] CHEN W, ZHANG Q, LIU J, et al. Design and fabrication of a high-frequency microconvex array transducer for small animals imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(6): 1943-1951. [66] FOSTER F S, MEHI J, LUKACS M, et al. A new 15~50 MHz array-based micro-ultrasound scanner for preclinical imaging[J]. Ultrasound in medicine & biology, 2009, 35(10): 1700-1708. [67] BEZANSON A, ADAMSON R, BROWN J A. Fabrication and performance of a miniaturized 64-element high-frequency endoscopic phased array[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2014, 61(1): 33-43. [68] CUMMINS T, ELIAHOO P, SHUNG K K. High-frequency ultrasound array designed for ultrasound-guided breast biopsy[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2016, 63(6): 817-827. [69] RIVANDI H, COSTA T L. A 2d ultrasound phased-array transmitter asic for high-frequency us stimulation and powering[J]. IEEE Transactions on Biomedical Circuits and Systems, 2023, 17(4): 701-712. [70] RAHIMI S, JONES R M, HYNYNEN K. A high-frequency phased array system for transcranial ultrasound delivery in small animals[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 68(1): 127-135. [71] BLACKMORE J, SHRIVASTAVA S, SALLET J, et al. Ultrasound neuromodulation: a review of results, mechanisms and safety[J]. Ultrasound in Medicine & Biology, 2019, 45(7): 1509-1536. [72] HE J, ZHU Y, WU C, et al. Simultaneous multi-target ultrasound neuromodulation in freely-moving mice based on a single-element ultrasound transducer[J]. Journal of Neural Engineering, 2023, 20(1): 016021. [73] YANG Y, YUAN J, FIELD R L, et al. Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound[J]. Nature Metabolism, 2023, 5(5): 789-803. [74] YANG H, YAN J, JI H, et al. Modulatory effect of low-intensity transcranial ultrasound stimulation on behaviour and neural oscillation in mouse models of alzheimer’s disease[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 770-780. [75] HE J, WU J, ZHU Y, et al. Multitarget transcranial ultrasound therapy in small animals based on phase-only acoustic holographic lens[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 69(2): 662-671. [76] KIM M G, YU K, YEH C Y, et al. Low-intensity transcranial focused ultrasound suppresses pain by modulating pain-processing brain circuits[J]. Blood, 2024, 144(10): 1101-1115. [77] ZHU Y, HE J, WU C, et al. Multi-Target Ultrasound Neuromodulation in the Treatment of Freely Moving Depression Mice[C]//2022 IEEE International Ultrasonics Symposium (IUS) . Venice: IEEE, 2022: 1-3. [78] ZHU Y, HE J, WU C, et al. Transcranial ultrasound stimulation relieves depression in mice with chronic restraint stress[J]. Journal of Neural Engineering, 2023, 20(3): 036011. [79] ZHUANG X, HE J, WU J, et al. A spatial multitarget ultrasound neuromodulation system using high-powered 2-D array transducer[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(3): 998-1007. |
No related articles found! |
|