广东工业大学学报 ›› 2025, Vol. 42 ›› Issue (01): 1-14.doi: 10.12052/gdutxb.240167

• 特约综述 •    下一篇

新型超声换能器在生物医学领域的研究进展

王超1,2, 程中文1, 吴俊伟1, 文学1, 陈燕1, 曾吕明1, 纪轩荣1   

  1. 1. 广东工业大学 精密电子制造技术与装备国家重点实验室, 广东 广州 510006;
    2. 荆楚理工学院 智能制造学院, 湖北 荆门 448000
  • 收稿日期:2024-12-24 出版日期:2025-01-25 发布日期:2025-01-16
  • 通信作者: 程中文(1992–),男,特聘副教授,博士,主要研究方向为光声/超声成像及其应用基础研究,E-mail:ZW_Cheng@gdut.edu.cn;纪轩荣, 纪轩荣(1980–),男,教授,博士,主要研究方向为超声换能器的设计与制造、超声无损检测和监测,E-mail:xr.ji@gdut.edu.cn
  • 作者简介:王超(1997–),男,博士研究生,主要研究方向为超声换能器设计与制造,E-mail:202021002210@smail.xtu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(62205070, 82227803, 51975131);国家自然科学基金民航联合基金重点资助项目(U2133213);中国博士后科学基金资助项目(No. 2023M730728);广东省自然科学基金资助项目(2023A1515011620);广州国家实验室研发项目(GZNL2023A03002)

Research Progress of Novel Ultrasonic Transducers in the Biomedical Field

Wang Chao1,2, Cheng Zhongwen1, Wu Junwei1, Wen Xue1, Chen Yan1, Zeng Lyuming1, Ji Xuanrong1   

  1. 1. State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China;
    2. School of Intelligent Manufacturing, Jingchu University of Technology, Jingmen 448000, China
  • Received:2024-12-24 Online:2025-01-25 Published:2025-01-16

摘要: 超声换能器作为生物医学超声系统的核心部件,其性能直接决定诊断和治疗效果。近年来,随着生物医学技术的发展,对高性能超声换能器的需求日益增长。本文综述了新型超声换能器在生物医学领域的最新研究进展,分析了小型、非接触空气耦合、透明、柔性、高频阵列以及低功率等不同类型超声换能器的性能特点,探讨了其在生物医学成像、治疗和神经调控等方面的应用前景,并总结了当前面临的挑战,包括换能器声功能材料选择、结构优化以及应用场景多元化等。未来研究应聚焦于新型声功能材料的开发、高性能换能器设计以及跨学科合作,以推动超声换能器技术更好地服务于生物医学应用。

关键词: 超声换能器, 超声成像, 超声调控, 生物医学

Abstract: As a core component of biomedical ultrasound systems, the performance of ultrasound transducers directly determines the effectiveness of diagnosis and treatment. In recent years, with the development of biomedical technology, there is an increasing demand for high-performance ultrasound transducers. This paper reviews the latest research progress of new ultrasound transducers in the biomedical field, analyzes the performance characteristics of different types of ultrasound transducers, such as small, air-coupled, transparent, flexible, high-frequency arrays, and low-power transducers, and discusses the application prospects in biomedical imaging, therapy, and neuromodulation, and summarizes the current challenges, including the selection of acoustic functional materials for the transducers, structural optimization, and diversification of application scenarios. application scenarios, etc. Future research should focus on the development of new acoustic materials, high-performance transducer design, and interdisciplinary cooperation to promote ultrasonic transducer technology to better serve biomedical applications.

Key words: ultrasound transducer, ultrasound imaging, ultrasound modulation, biomedical

中图分类号: 

  • TB552
[1] LI F, LIN D, CHEN Z, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nature Materials, 2018, 17(4): 349-354.
[2] LI F, ZHANG S, YANG T, et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals[J]. Nature Communications, 2016, 7(1): 13807.
[3] PAN H, LI F, LIU Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design[J]. Science, 2019, 365(6453): 578-582.
[4] LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb (Mg1/3Nb2/3) O3-PbTiO3 single crystals[J]. Science, 2019, 364(6437): 264-268.
[5] CHEN Z, LI F, HUANG Q, et al. Giant tuning of ferroelectricity in single crystals by thickness engineering[J]. Science Advances, 2020, 6(42): eabc7156.
[6] WANG H, CHEN Z, YANG H, et al. A ceramic PZT-based PMUT array for endoscopic photoacoustic imaging[J]. Journal of Microelectromechanical Systems, 2020, 29(5): 1038-1043.
[7] WANG J, ZHENG Z, CHAN J, et al. Capacitive micromachined ultrasound transducers for intravascular ultrasound imaging[J]. Microsystems & Nanoengineering, 2020, 6(1): 73.
[8] JUNG J, LEE W, KANG W, et al. Review of piezoelectric micromachined ultrasonic transducers and their applications[J]. Journal of Micromechanics and Microengineering, 2017, 27(11): 113001.
[9] QIU Y, GIGLIOTTI J V, WALLACE M, et al. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging[J]. Sensors, 2015, 15(4): 8020-8041.
[10] LI T, CHEN Y, MA J. Development of a miniaturized piezoelectric ultrasonic transducer[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(3): 649-659.
[11] CHENG X, CHEN J, LI C. A miniature capacitive micromachined ultrasonic transducer array for minimally invasive photoacoustic imaging[J]. Journal of Microelectromechanical Systems, 2010, 19(4): 1002-1011.
[12] FLEISCHMAN A, MODI R, NAIR A, et al. Miniature high frequency focused ultrasonic transducers for minimally invasive imaging procedures[J]. Sensors and Actuators A: Physical, 2003, 103(1-2): 76-82.
[13] ATAR S, LUO H, NAGAI T, et al. Ultrasonic thrombolysis: catheter-delivered and transcutaneous applications[J]. European Journal of Ultrasound, 1999, 9(1): 39-54.
[14] YASUI A, HAGA Y, CHEN J J, et al. Focused ultrasonic transducer for localized sonodynamic therapy[C]// The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Seoul: IEEE, 2005: 1660-1663.
[15] MAIONE E, SHUNG K K, MEYER R J, et al. Transducer design for a portable ultrasound enhanced transdermal drug-delivery system[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2002, 49(10): 1430-1436.
[16] YASUI A, HAGA Y, CHEN J, et al. Focused ultrasonic device for sonodynamic therapy in the human body[C]//2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology. Oahu, HI: IEEE, 2005: 154-157.
[17] SNOOK K A, ZHAO J Z, ALVES C H, et al. Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2002, 49(2): 169-176.
[18] LI X, WU W, CHUNG Y, et al. 80-MHz intravascular ultrasound transducer using PMN-PT free-standing film[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2011, 58(11): 2281-2288.
[19] CHEN W, WANG B, CHEN J, et al. Development of a high-frequency mini-convex array probe for intraluminal ultrasonic imaging applications[J]. IEEE Sensors Journal, 2024(11): 24.
[20] 吕圣苗, 王振常, 蔡杰, 等. 用于血管内成像的 60 MHz 高频超声换能器设计及其成像实验[J]. 集成技术, 2022, 11(5): 34-44.
LYU S M, WANG Z C, CAI J, et al. 60 MHz high frequency intravascular ultrasound transducer and in vivo imaging[J]. Journal of Integration Technology, 2022, 11(5): 34-44.
[21] HE H, BUEHLER A, BOZHKO D, et al. Importance of ultrawide bandwidth for optoacoustic esophagus imaging[J]. IEEE Transactions on Medical Imaging, 2017, 37(5): 1162-1167.
[22] JI X, XIONG K, YANG S, et al. Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer[J]. Optics Express, 2015, 23(7): 9130-9136.
[23] ZHANG J, YANG S, JI X, et al. Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation[J]. Journal of the American College of Cardiology, 2014, 64(4): 385-390.
[24] WANG X, SEETOHUL V, CHEN R, et al. Development of a mechanical scanning device with high-frequency ultrasound transducer for ultrasonic capsule endoscopy[J]. IEEE Transactions on Medical Imaging, 2017, 36(9): 1922-1929.
[25] JIAO Y, CUI Y, WU J, et al. A shear wave endoscopic elasticity imaging approach with micro focused piezoelectric transducer[C]//2017 IEEE International Ultrasonics Symposium (IUS) . Washington, DC: IEEE, 2017: 1-4.
[26] CHIMENTI D. Review of air-coupled ultrasonic materials characterization[J]. Ultrasonics, 2014, 54(7): 1804-1816.
[27] GINEL A M, ÁLVAREZ-ARENAS T G. Air-coupled transducers for quality control in the food industry[C]//2019 IEEE International Ultrasonics Symposium (IUS) . Glasgow: IEEE, 2019: 803-806.
[28] RATHOD V T. A review of acoustic impedance matching techniques for piezoelectric sensors and transducers[J]. Sensors, 2020, 20(14): 4051.
[29] ZHOU J, BAI J, LIU Y. Fabrication and modeling of matching system for air-coupled transducer[J]. Micromachines, 2022, 13(5): 781.
[30] BLUM F, JARZYNSKI J, JACOBS L J. A focused two-dimensional air-coupled ultrasonic array for non-contact generation[J]. NDT & E International, 2005, 38(8): 634-642.
[31] WANG C, GAO H, ZHOU X, et al. Design, fabrication, and characterization of 1-3 piezoelectric composite air-coupled ultrasonic transducers with micro-membrane filter matching layer [J]. Sensors and Actuators A: Physical, 2024: 115955.
[32] JAE LEE H, ZHANG S, MEYER R J, et al. Characterization of piezoelectric ceramics and 1-3 composites for high power transducers[J]. Applied Physics Letters, 2012, 101(3): 032902.
[33] MANBACHI A, COBBOLD R S. Development and application of piezoelectric materials for ultrasound generation and detection[J]. Ultrasound, 2011, 19(4): 187-196.
[34] YANG Y, ZHU K, SUN E, et al. Ultrabroad-bandwidth ultrasonic transducer based on Sm-doped PMN-PT ceramic/epoxy 1-3 composite[J]. Sensors and Actuators A: Physical, 2022, 346: 113873.
[35] ZHOU X, MA W, GAO H, et al. Air-coupled ultrasonic transducer based on lead-free piezoceramics prepared by digital light processing 3D printing[J]. Ultrasonics, 2024, 143: 107429.
[36] MA H, XIONG K, WU J, et al. Noncontact photoacoustic angiography with an air-coupled ultrasonic transducer for evaluation of burn injury[J]. Applied Physics Letters, 2019, 114(13): 133701.
[37] DEáN-BEN X L, PANG G A, MONTERO DE ESPINOSA F, et al. Non-contact optoacoustic imaging with focused air-coupled transducers[J]. Applied Physics Letters, 2015, 107(5): 051105.
[38] LANDA F J O, DEáN-BEN X L, MONTERO DE ESPINOSA F, et al. Noncontact monitoring of incision depth in laser surgery with air-coupled ultrasound transducers[J]. Optics Letters, 2016, 41(12): 2704-2707.
[39] QIU C, ZHANG Z, XU Z, et al. Transparent ultrasonic transducers based on relaxor ferroelectric crystals for advanced photoacoustic imaging[J]. Nature Communications, 2024, 15(1): 1-14.
[40] QIU C, WANG B, ZHANG N, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity[J]. Nature, 2020, 577(7790): 350-354.
[41] CHO S, KIM M, AHN J, et al. An ultrasensitive and broadband transparent ultrasound transducer for ultrasound and photoacoustic imaging in-vivo[J]. Nature Communications, 2024, 15(1): 1444.
[42] 何勇, 廖唐云, 吴俊伟, 等. 基于透明超声换能器的光声显微镜设计[J]. 中国激光, 2022, 49(3): 98-104
HE Y, LIAO T Y, WU J W, et al. Design of photoacoustic microscope based on transparent ultrasonic transducer[J]. Chinese Journal of Lasers, 2022, 49(3): 98-104.
[43] LIAO T, LIU Y, WU J, et al. Centimeter-scale wide-field-of-view laser-scanning photoacoustic microscopy for subcutaneous microvasculature in vivo[J]. Biomedical Optics Express, 2021, 12(5): 2996-3007.
[44] KIM D, PARK E, PARK J, et al. An ultraviolet-transparent ultrasound transducer enables high-resolution label‐free photoacoustic histopathology[J]. Laser & Photonics Reviews, 2024, 18(2): 2300652.
[45] PARK J, PARK B, KIM T Y, et al. Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(11): e1920879118.
[46] XUE X, WU H, CAI Q, et al. Flexible ultrasonic transducers for wearable biomedical applications: a review on advanced materials, structural designs, and future prospects[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2024, 71(7): 786-810.
[47] CHEN J, LIU J, CHEN W, et al. Skin-conformable flexible and stretchable ultrasound transducer for wearable imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2024, 71(7): 811-820.
[48] CHEN W, LIU J, LEI S, et al. Flexible ultrasound transducer with embedded optical shape sensing fiber for biomedical imaging applications[J]. IEEE Transactions on Biomedical Engineering, 2023, 70(10): 2841-2851.
[49] KIM T, CUI Z, CHANG W Y, et al. Flexible 1-3 composite ultrasound transducers with silver-nanowire-based stretchable electrodes[J]. IEEE Transactions on Industrial Electronics, 2019, 67(8): 6955-6962.
[50] 李尧, 夏子颐, 李晓兵, 等. 柔性无损检测超声线阵换能器的仿真研究[J]. 建模与仿真, 2024, 13(3): 2223-2232.
LI Y, XIA Z Y, LI X B, et al. Simulation study on flexible non-destructive testing of ultrasonic linear array transducers[J]. Modeling and Simulation, 2024, 13(3): 2223-2232.
[51] HU H, ZHU X, WANG C, et al. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces[J]. Science Advances, 2018, 4(3): eaar3979.
[52] DE OLIVEIRA T F, PAI C N, MATUDA M Y, et al. Development of a 2.25 MHz flexible array ultrasonic transducer[J]. Research on Biomedical Engineering, 2019, 35: 27-37.
[53] ZHOU S, GAO X, PARK G, et al. Transcranial volumetric imaging using a conformal ultrasound patch[J]. Nature, 2024, 629(8013): 810-818.
[54] LEE J H, CHO I J, KO K, et al. Flexible piezoelectric micromachined ultrasonic transducer (pMUT) for application in brain stimulation[J]. Microsystem Technologies, 2017, 23: 2321-2328.
[55] LYU W, MA Y, CHEN S, et al. Flexible ultrasonic patch for accelerating chronic wound healing[J]. Advanced Healthcare Materials, 2021, 10(19): 2100785.
[56] PENG C, CHEN M, SIM H K, et al. Noninvasive and nonocclusive blood pressure monitoring via a flexible piezo-composite ultrasonic sensor[J]. IEEE Sensors Journal, 2020, 21(3): 2642-2650.
[57] WANG X, JI Z, YANG S, et al. Morphological-adaptive photoacoustic tomography with flexible transducer and flexible orientation light[J]. Optics Letters, 2017, 42(21): 4486-4489.
[58] CHEN J, FEI C, LIN D, et al. A review of ultrahigh frequency ultrasonic transducers[J]. Frontiers in Materials, 2022, 8: 733358.
[59] 王嘉程, 王丽坤, 仲超. 1-3 型压电复合材料研究进展[J]. 电子元件与材料, 2021, 40(3): 219-228
WANG J C, WANG L K, ZHONG C. Recent advance in 1-3 piezoelectric composites[J]. Electron Compon Mater, 2021, 40(3): 219-228.
[60] 史新旺, 冯炼, 周小伟. 基于凸阵列超声换能器的宽波束成像算法研究 [J]. 中国生物医学工程学报, 2024, 43(3): 278-285.
SHI X W, FENG L, ZHOU X W. Implementation of wide-beam ultrasound imaging based on a convex transducer [J]. Chinese Journal of Biomedical Engineering, 2024, 43(3): 278-285.
[61] 孔凡国, 陈然然, 段文科. 高频医用超声换能器的研究现状及发展趋势[J]. 功能材料与器件学报, 2015(5): 133-138.
KONG F G, CHEN R R, DUAN W K. Research status and development trend of high-frequency medical ultrasonic transducer[J]. Journal of Functional Materials and Devices, 2015(5): 133-138.
[62] LEI Z, XU G, LIU J, et al. Low-stress ultrafast laser micromachining for high-frequency pmn-pt/epoxy composite transducers[J]. IEEE Sensors Journal, 2024, 24(5): 5873-5884.
[63] 田俊亭, 李晓兵, 丁伟艳, 等. 软模板法制备高频超声换能器用 1-3 复合压电材料[J]. Journal of Inorganic Materials, 2022, 37(5): 507-512.
TIAN J T, LI X B, DING W Y, et al. Fabrication of 1-3 piezocomposites via soft mold method for high-frequency ultrasound transducer[J]. Journal of Inorganic Materials, 2022, 37(5): 507-512.
[64] ROA C F, CHéRIN E, SINGH N, et al. Development of a small-footprint 50 mhz linear array: fabrication and micro-ultrasound imaging demonstration[J]. Sensors, 2024, 24(6): 1847.
[65] CHEN W, ZHANG Q, LIU J, et al. Design and fabrication of a high-frequency microconvex array transducer for small animals imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(6): 1943-1951.
[66] FOSTER F S, MEHI J, LUKACS M, et al. A new 15~50 MHz array-based micro-ultrasound scanner for preclinical imaging[J]. Ultrasound in medicine & biology, 2009, 35(10): 1700-1708.
[67] BEZANSON A, ADAMSON R, BROWN J A. Fabrication and performance of a miniaturized 64-element high-frequency endoscopic phased array[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2014, 61(1): 33-43.
[68] CUMMINS T, ELIAHOO P, SHUNG K K. High-frequency ultrasound array designed for ultrasound-guided breast biopsy[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2016, 63(6): 817-827.
[69] RIVANDI H, COSTA T L. A 2d ultrasound phased-array transmitter asic for high-frequency us stimulation and powering[J]. IEEE Transactions on Biomedical Circuits and Systems, 2023, 17(4): 701-712.
[70] RAHIMI S, JONES R M, HYNYNEN K. A high-frequency phased array system for transcranial ultrasound delivery in small animals[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 68(1): 127-135.
[71] BLACKMORE J, SHRIVASTAVA S, SALLET J, et al. Ultrasound neuromodulation: a review of results, mechanisms and safety[J]. Ultrasound in Medicine & Biology, 2019, 45(7): 1509-1536.
[72] HE J, ZHU Y, WU C, et al. Simultaneous multi-target ultrasound neuromodulation in freely-moving mice based on a single-element ultrasound transducer[J]. Journal of Neural Engineering, 2023, 20(1): 016021.
[73] YANG Y, YUAN J, FIELD R L, et al. Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound[J]. Nature Metabolism, 2023, 5(5): 789-803.
[74] YANG H, YAN J, JI H, et al. Modulatory effect of low-intensity transcranial ultrasound stimulation on behaviour and neural oscillation in mouse models of alzheimer’s disease[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 770-780.
[75] HE J, WU J, ZHU Y, et al. Multitarget transcranial ultrasound therapy in small animals based on phase-only acoustic holographic lens[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 69(2): 662-671.
[76] KIM M G, YU K, YEH C Y, et al. Low-intensity transcranial focused ultrasound suppresses pain by modulating pain-processing brain circuits[J]. Blood, 2024, 144(10): 1101-1115.
[77] ZHU Y, HE J, WU C, et al. Multi-Target Ultrasound Neuromodulation in the Treatment of Freely Moving Depression Mice[C]//2022 IEEE International Ultrasonics Symposium (IUS) . Venice: IEEE, 2022: 1-3.
[78] ZHU Y, HE J, WU C, et al. Transcranial ultrasound stimulation relieves depression in mice with chronic restraint stress[J]. Journal of Neural Engineering, 2023, 20(3): 036011.
[79] ZHUANG X, HE J, WU J, et al. A spatial multitarget ultrasound neuromodulation system using high-powered 2-D array transducer[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(3): 998-1007.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!