广东工业大学学报 ›› 2012, Vol. 29 ›› Issue (3): 59-62.doi: 10.3969/j.issn.1007-7162.2012.03.011

• 综合研究 • 上一篇    下一篇

条件点错误情况下交叉立方体中哈密顿圈的存在性讨论

殷超杰,郭大昌,郑健微   

  1. 广东工业大学 应用数学学院,广东 广州 510520
  • 收稿日期:2012-02-24 出版日期:2012-09-20 发布日期:2012-09-20
  • 作者简介:殷超杰(1985-),男,硕士研究生,主要研究方向为组合网络理论.

Faultfree Hamiltonian Cycles in Crossed Cubes with Conditional Node Faults

Yin Chaojie, Guo Dachang, Zheng Jianwei   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520,China
  • Received:2012-02-24 Online:2012-09-20 Published:2012-09-20

摘要: 交叉立方体的容错性研究备受学者关注.本文在条件节点错(每一个健康节点至少还有其它两个健康节点与之相邻)的条件下,证明了nn≥4)维交叉立方体中错误节点的个数达到2n-7个时哈密顿圈的存在性.

关键词: 交叉立方体;条件点错;哈密顿圈;容错

Abstract: The crossed cube which is a topological structure of the network has received much attention from scholars worldwide, and studies of its faulttolerance are also a major concern. In the situation of conditional node fault (each faultfree node is adjacent to at least two other faultfree nodes), it  discusses that  while n≥4, the Hamiltonian cycles exist in a n dimensional crossed cube, even if the number of faulty nodes is up to 2n-7.

Key words: crossed cube; conditional node fault; Hamiltonian cycle; fault tolerance

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!