广东工业大学学报 ›› 2012, Vol. 29 ›› Issue (4): 72-76.doi: 10.3969/j.issn.1007-7162.2012.04.015

• 综合研究 • 上一篇    下一篇

讨论Burgers方程的概率空间与特征正交空间的最小平均距离问题

吴加荣   

  1. 华北电力大学 数理学院,北京 102206
  • 收稿日期:2012-03-06 出版日期:2012-12-25 发布日期:2012-12-25
  • 作者简介:吴加荣(1988-),男,硕士研究生,主要研究方向为偏微分方程数值解法.

Study of Minimum Average Distance between Probability Space and Proper Orthogonal Space of Burgers Equation

Wu Jia-rong   

  1. School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
  • Received:2012-03-06 Online:2012-12-25 Published:2012-12-25

摘要: 引入描述Burgers方程物理过程的两个不同函数空间,分别为概率空间和特征正交空间.为了讨论它们的距离关系,建立了概率空间和特征正交空间的最小平均距离问题,并利用模拟退火算法进行求解.进一步利用这个最小距离,获得Burgers方程的一个近似解,而它是由特征正交空间的基线性组合得到的.

关键词: Burgers方程;概率空间;特征正交空间;最小平均距离;模拟退火

Abstract: It introduces two different kinds of function space, probability space and proper orthogonal space, both of which are used to describe the physics motions of Burgers equation. In order to discuss the distance between them, it proposed a problem involving the minimum average distance between probability space and proper orthogonal space. Here, simulated annealing was used to solve this problem. Besides,  by applying the minimum average distance, an approximate solution to Burgers equation was attained through the linear combination of basis functions of proper orthogonal space.

Key words: Burgers equation; probability space; proper orthogonal space; minimum average distance; simulated annealing

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!