广东工业大学学报 ›› 2015, Vol. 32 ›› Issue (1): 117-120.doi: 10.3969/j.issn.1007-7162.2015.01.024

• 综合研究 • 上一篇    下一篇

一种高维数据的因果推断算法

 张浩   

  1. 广东工业大学 应用数学学院,广东 广州 510520
  • 收稿日期:2013-10-24 出版日期:2015-03-05 发布日期:2015-03-05
  • 作者简介:张浩(1989-), 男, 硕士研究生, 主要研究方向为智能计算.
  • 基金资助:

    国家自然科学基金资助项目(61100148; 61202269)

An Approach to Highdimensional Data Causality Inference

Zhang Hao   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2013-10-24 Online:2015-03-05 Published:2015-03-05

摘要: 发现数据间的因果关系是科学领域的一个重要问题,然而在高维数据中的因果推断暂时还没有有效的算法. 这里提出了一种基于条件独立性测试和互信息的适应于高维数据的因果推断算法. 该算法先用条件独立性测试和互信息降低数据集的维度,然后利用一种基于非线性加噪声模型的算法对节点间的方向进行判别. 数据试验表明,该算法在高维数据的情况下要优于目前其他的算法.

关键词: 因果推断; 条件独立性测试; 互信息

Abstract: Discovering causality from the data set is one of the basic problems in the scientific field. However, there is still no effective algorithm to discover causalities from highdimensional data. We present an algorithm for large scale causality discovery, which is based on conditional independence test and mutual information. Firstly, the algorithm reduces the dimensionality of data set by conditional independence test and mutual information, and then we employ an approach based on nonlinear additive noise models to distinguish the directions between nodes. Experimental results show that it outperforms other methods.

Key words: causality inference; conditional independence test; mutual information

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!