广东工业大学学报 ›› 2015, Vol. 32 ›› Issue (2): 98-103.doi: 10.3969/j.issn.1007-7162.2015.02.018

• 综合研究 • 上一篇    下一篇

一类三阶非线性时滞微分方程解的全局渐进稳定性与有界性

董超,高学军,周敏   

  1. 广东工业大学 应用数学学院,广东 广州 510520
  • 收稿日期:2013-09-16 出版日期:2015-05-30 发布日期:2015-05-30
  • 作者简介:董超(1990-), 男, 硕士研究生, 主要研究方向为微分动力系统
  • 基金资助:

    广东省自然科学基金资助项目(S2011010005029);广东省自然科学基金自由申请项目(10151009001000032)

Global Asymptotic Stability and Boundedness of Solutions to-a Kind of Non-Linear Third-Order Delay Differential Equations

Dong Chao1, Gao Xue-jun2, Zhou Min3   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2013-09-16 Online:2015-05-30 Published:2015-05-30

摘要: 考虑一类三阶非线性时滞微分方程x+g(x,x)x+f(x(t-T2(t)))=p(t,x,x,x)).利用Lyapunov第二方法,得到了使零解全局渐进稳定和所有解有界的充分性准则.

关键词: 时滞微分方程; 全局渐进稳定; 有界性; Lyapunov泛函

Abstract: In this paper, the authors study a kind of nonlinear thirdorder delay differential equations as follows,x+g(x,x)x+f(x(t-T2(t)))=p(t,x,x,x))By using the second method of Lyapunov, the researchers establish some sufficient conditions for the global asymptotic stability of the zero solution and the boundedness of all solutions to it.

Key words: delay differential equations; global asymptotic stability; boundedness; Lyapunov functional

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!