广东工业大学学报 ›› 2004, Vol. 21 ›› Issue (1): 92-96.

• 综合研究 • 上一篇    下一篇

下侧二重Laplace-Stieltjges积分在双带形内的增长性

  

  1. 广东工业大学应用数学系 广东广州510643;
  • 出版日期:2004-03-03 发布日期:2004-03-03

The Growth of Lower Side Bitangent Laplace-Stieltjes Integral in Bilinear Strip

  1. (Dept.of Applied Mathematics,Guangdong University of Technology,Guangzhou 510643,China)
  • Online:2004-03-03 Published:2004-03-03

摘要: 定义了双侧与下侧二重Laplace Stieltjes变换与积分;讨论了它们的几对相关收敛横坐标;通过引进两个递减负实数列{λ-m}与{μ-n},建立了下侧二重Laplace Stieltjes积分所定义的整函数的θ线性极与下级的概念及存在定理;建立了该积分在双带形内的增长性理论,推广了上侧二重Dirichlet级数相应结论. 

关键词: 下侧二重LaplaceStieltjes变换; 二元整函数; 相关绝对收敛横坐标; θ线性级; θ线性下级; 双带形;

Abstract: Defined are bilateral and lower side bitangent Laplaec-Stieltjes transform and integral.Discussed are three pairs of dependent converge abscissa of this series.By introducing a seguently decreasing negative real series{λ(-m)}and{μ(-n)},the θ linear order and lower order concept and existing theorem in analytic function defined by lower side Laplace-Stieltjes integral are established.The growht theory of the integral in bilinear strip is also established,extending the corresponding results of upper side bitangent Dirichlet series.

Key words: lower side bitangent Laplace-Stieltjes transform; binary in analytic function; abscissa of dependent absolute converge; θ linear order; θ linear lower order; bilinear strip;

[1] 尤秀英.  下侧二重Laplace-Stieltjes积分的θ线性下级与准确下级[J]. 吉林大学自然科学学报. 2000(01)

[2] 尤秀英.  LAPLACE-STIELTJES变换所定义的解析函数的下级[J]. 武汉大学学报(自然科学版). 1997(05)

[1] Yu Jiarong.  The lower orders of Dirichlet and random Dirichlet series[J] ,1996

[1] Widder D V.An introduction to TRANSFORM THEORY. . 1975

[2] Yu Jiarong.Lower order of dirichlet series and ranaom dirichlet series. Wuhan University Journal of Natural Sciences . 1996
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!