广东工业大学学报 ›› 2010, Vol. 27 ›› Issue (1): 12-15.

• 综合研究 • 上一篇    下一篇

M-P逆在加法扰动下奇异空间的扰动界

  

  1. 茂名职业技术学院基础部, 广东茂名525000
  • 出版日期:2010-03-25 发布日期:2010-03-25

Perturbation Bounds for Singular Subspace ofM-P Inverse under Addictive Noise

  1. Basic Courses Department, M aom ing Vocational Technica l College, Maom ing 525000, China
  • Online:2010-03-25 Published:2010-03-25

摘要: 作者简介: 吴.. 强( 1960-), 男, 副教授, 主要研究方向为矩阵理论.
矩阵的M oore-Penrose 逆在有相同分块的奇异值分解和加法扰动下, 对M oore-Penro se逆矩阵奇异值分解伴随的奇异子空间, 用奇异值的双分离度获得左右奇异空间的分离和联合的扰动界.

关键词: M-P逆; 加法扰动; 奇异空间; 奇异值分解

Abstract: Abstract: Under singu lar va lue decomposition w ith the same b locks and addictive noise, w ith the singu lar decomposition toMoore-Penrose inverse is singular subspace. By b-i separat ing degree, the separating and connecting perturbation bounds o f lef-t right singular subspace are obtained.

Key words: Moo re-Penrose inverse; addictive no ise; singu lar subspace; singu lar decomposit ion

[ 1] W edin P A. Perturbation bounds in connection w ith singu larva lue decompostion[ J]. B IT, 1972( 12): 99-111.

[ 2] Li Ren-C ang. Re la tive pe rturba tion theory. E igenspace and singu lar subspace variations[ J]. SIAM M atr ir Ana.l App,l 1998, 20: 471-492.

[ 3] 孙继广. 矩阵扰动分析[M ] . 北京: 科学出版社, 1987.

[ 4] 陈小山. 矩阵特征空间和奇异空间相对扰动界[ J]. 华南师范大学学报, 2005( 1): 6-10.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!