摘要: 提出了一种基于爬山算子和适应值共享的改进遗传算法,将局部搜索算法与遗传算法有效结合,增强了遗传算法的搜索能力.爬山算子以黄金分割法为基础,依次对个体每一维进行优化.数值实验证明,改进后的新算法优于当前一些较好的遗传算法.新算法既有较快的收敛速度,又能以较大概率搜索到优化问题的全局最优解.
[1] Tu Chengyuan,Zeng Yanjun.A New Genetic Algorithm Based Upon GloballyOptimal Choosing and Its Practices[J].Engineering Science,2003,5(2):28-29.[2] Zhou Ming,Sun Shudong.Principle of genetic Algorithmn and application[M].Beijing:National Defence Industry Press,1999.[3] Zhao Chuanxin,Ji Yimu.Particle Swarm Optimization for 0/1 Knaps Problem[J].Microcomputer Develepment,2005(10):23-25.[4] 唐焕文,秦学志.实用最优化方法[M].第3版.大连:大连理工大学出版,1999.[5] 周明,孙树栋.遗传算法原理及其应用[M].北京:国防工业出版社,1999.[6] 刘伟,刘海林.基于外点法的混合遗传算法求解约束优化问题[J].计算机应用,2007,27(1):238-240.[7] Kusum Deep,Manoj Thakur.A new crossover operator for real coded genetic Algorithms[M].India:Elsevier Inc,2007.[8] Holland J H.Adaptation in natural and artificial systems[M].Ann Arbor:The MIT Press,1992.[9] Goldberg D E,Richardson J.Genetic algorithms with sharing for multimodal function optimization[M].Hillsdale:Lawrence Erlbaum,1987.[10] 于歆杰,王赞基.对适应值共享遗传算法的分类及评价[J].模式识别与人工智能,2001,14(1):42-47. |
No related articles found! |
|