摘要: 研究了一类具有时变时滞的中立型微分系统,着重考虑了这个微分系统的渐近稳定性,基于Lyapunov方法,结合线性矩阵不等式(LMI),提出了一个关于t 、σ和h(t)的时滞稳定性标准,并提供两个数值例子以表明这个方法的有效性.
[1] Gopalsamy K,Liu P,Leung I.Global Hopfbifuration in a neural netet[J].Applied Mathematics and Computation,1998,94(2/3):171-192.[2] El-Morshedy H A,Gopalsamy K.Nonoscillation,oscillation and convergence of a class of neutral equations[J].Nonliner Analysis,2000,40(1-8):173-183.[3] Agarwal R P,Grace S R.Asymptotic stability of certain neutral differential equations[J].Mathematical and Computer Modelling,2000,31(8-9):9-15.[4] Park J H.Delaydependent criterion for asymptotic stability of neutral equation[J].Applied Mathematics Letters,2004,17:1203-1206.[5] Park J H,Kwon O M.Stablity analysis of certain nonlinear differential equation[J].Chaos Solitons & Fractals,2008,37(2):450-453.[6] Kwon O,Park J H. On improved delaydependent stability criterion of certain neutral differential equations[J]. Applied Mathematics and Computation,2008,199(1):385-391.[7] Hale J, Verduyn Lunel S M. Introduction to Functional Differential Equations[M]. New York: Springer-Verlag,1993.[8] Boyd S, Ghaoui L E,Feron E,et al. Linear matrix inequalities in systems and control theory[M]. Philadelphia:Studies in Applied Mathematics, 1994. |
No related articles found! |
|