摘要: 研究空间Ω上带有非线性边界条件的椭圆型方程的非平凡解,其中Ω是RN(N≥3)中的有界光滑区域,非线性项f(x,s)关于s在无穷远处渐近线性. 应用Ekeland’s变分原理和Mountain Pass定理,证明当非负参数 〖QX(Y12〗SymbollAp〖QX)〗充分小时,方程至少存在两个不同的非平凡解.
[1] Adams R A, Journier J. Sobolev Spaces[M]. Second edition.Amsterdam:Acad Press,2003.[2] Garcia Azorero J, Peral I, Rossi J D. A convexconcave problem with a nonlinear boundary condition[J]. J Differential Equations, 2004(198): 91-128.[3] Terraccini S. Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions[J]. Differential Integral Equations, 1995(8):1911-1922.[4] Ambrosetti A, Rabinowitz P. Dual variational methods in critical points theory and applications[J]. J Funct Anal,1973(14):349381.[5] Ekeland I. Nonvex minimization problems[J]. Bull Amer Math Soc, 1979(1): 443-473.[6] Li Shujie, Wu Shaoping, Zhou Huansong. Solutions to semilinear elliptic problems with combined nonlinearities[J]. J Differential Equations, 2002(185):200-224.[7] Schechter M. A variation of the Mountain Pass lemma and applications[J]. J London Math Soc, 1991(44): 491-502. |
No related articles found! |
|