广东工业大学学报 ›› 2012, Vol. 29 ›› Issue (1): 27-31.
摘要: 结合弹性材料修正后的HR变分原理和九节点四边形等参元二次插值函数,建立了九节点Hamilton等参元列式的正则方程.简要地介绍了弹性材料修正后的HR变分原理.基于变分原理使用3×3的高斯积分详细地推导了Hamilton正则方程的九节点等参元列式,使得九节点等参元在有限元法中的优越性与弹性力学Hamilton正则方程的半解析法得到了有机的结合.数值实例的结果证明了本文九节点Hamilton等参元列式的正确性.
[1]饶寿期.有限元法和边界元法基础[M]. 北京:北京航空航天大学出版社,1989:90-110.[2] 钟万勰. 弹性力学求解新体系[M]. 大连:大连理工大学出版社,1995.[3] Qing Guanghui , Liu Yanhong , Guo Qing, et al. Dynamic analysis for threedimensional laminated plates and panels with damping[J]. International Journal of Mechanical Sciences,2008, 50(1):83-91.[4] 范家让.强厚度叠层板壳的精确理论[M]. 北京:科学出版社,1996.[5] Qing Guanghui, Qiu Jiaujun, Liu Yanhong. Free vibration analysis of stiffened laminated plates[J]. International Journal of Solids and Structure, 2006,43(6):1357-1371.[6] 徐建新,蔡宇,卿光辉.Hamilton正则方程半解析法的收敛和对称分析[J].中国民航大学学报,2007,25(4):12-15.[7] 卿光辉,邱家俊,塔娜.压电材料修正后的HR混合变分原理及其层合板的精确法[J].工程力学 ,2005,22(5):43-47.[8] 钟万勰. 应用力学对偶体系[M].北京:科学出版社,2003.[9] 王勖成. 有限单元法[M].北京:清华大学出版社,2003:145-149[10] 卿光辉,张领,贾立斌.热弹性复合材料层合板的响应分析[J].中国民航大学学报,2008,26(3):20-25.[11] 段梅,宫本裕,周本宽,等.四节点元和八节点元H收敛的比较[J].应用数学和力学,1996,17(1):9-14.[12] 吴永礼.九节点四边形等参数单元[J].中国电子学术期刊,1982(2):36-40.[13] 陈浩然, 杨正林, 唐立民.复合材料层合板固化过程的数值模拟[J]. 应用力学学报,1998,15(3):30-36.[14] 冷纪桐,赵军,张娅.有限元技术基础[M].北京:化学工业出版社,2007:90.[15] 卿光辉,邢瑞山,崔甲子.八节点Hamitonian等参元列式[J].中国民航大学学报,2010,28(1):22-25. |
No related articles found! |
|