广东工业大学学报 ›› 2014, Vol. 31 ›› Issue (1): 65-69.doi: 10.3969/j.issn.1007-7162.2014.01.013

• 综合研究 • 上一篇    下一篇

基于改进SURF算法的SAR图像目标匹配

雷禹,何家峰   

  1. 广东工业大学 信息工程学院,广东 广州  510006
  • 收稿日期:2013-01-11 出版日期:2014-03-29 发布日期:2014-03-29
  • 作者简介:雷禹(1987-),男,硕士研究生,主要研究方向为雷达图像目标检测及识别.

SAR Image Target Matching Based on the Improved SURF Algorithm

Lei Yu, He Jia-feng   

  1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006,China
  • Received:2013-01-11 Online:2014-03-29 Published:2014-03-29

摘要: 由于SAR(Synthetic Aperture Radar)图像纹理丰富且存在大量的噪声,使得传统SURF(Speed Up Robust Features)算子对SAR图像的目标兴趣点检测并不理想,存在兴趣点检测适应性不强和出现大量无用特征点,致使目标匹配的成功率下降.提出了融合恒虚警率(CFAR,Constant FalseAlarm Rate)和SURF的SAR图像目标匹配新算法.采用适应性较强的混合高斯模型拟合杂波的CFAR进行目标兴趣区域检测,运用SURF算子对检测的目标进行特征提取,使用改进的多层剔除方法匹配特征点.通过仿真分析了算法对SAR图像目标匹配的有效性,并在此方面与传统算法进行了比较.仿真实验表明该方法在目标尺度、旋转、噪声变化的情况下,依然可以达到较高的匹配率,具有优越的适应性、鲁棒性.

关键词: SAR图像;目标匹配;恒虚警率;SURF算子

Abstract: Because the SAR image has rich texture and a lot of noise, the traditional SURF operator is not ideal for the detection of target interest points on the SAR(Synthetic Aperture Radar) image, and it has poor adaptability to interest point detection and a large number of useless feature points, so that the target matching success rate decreases, It proposes a new SAR image matching algorithm which integrates CFAR with SURF. The mixed Gauss model CFAR was  used for the detection of target interest regions, and the SURF operator was used to detect feature extraction. Finally, the improved multilayer elimination method was used for matching feature points. The simulation results show that the proposed method has a high matching rate and good robustness when the scale, rotation and noise vary.

Key words: synthetic aperture radar(SAR) image; target matching; constant false alarm rate(CFAR); SURF algorithm

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!