广东工业大学学报 ›› 2016, Vol. 33 ›› Issue (02): 24-30.doi: 10.3969/j.issn.1007-7162.2016.02.005

• 综合研究 • 上一篇    下一篇

广义随机仿射系统的线性二次控制

朱怀念1, 张成科1, 曹铭2, 宾宁2   

  1. 广东工业大学 1.经济与贸易学院; 2.管理学院,广东 广州 510520
  • 收稿日期:2015-09-17 出版日期:2016-03-23 发布日期:2016-03-23
  • 作者简介:朱怀念(1985-),男,讲师,博士,主要研究方向为动态博弈理论及其应用.
  • 基金资助:

    国家自然科学基金资助项目(71771061, 11501129, 71571053);广东省自然科学基金资助项目(2015A030310218, 2014A030310366)

Linear Quadratic Control of Continuous-time Singular Stochastic Affine Systems

Zhu Huai-nian1, Zhang Cheng-ke1, Cao Ming2, Bin Ning2   

  1. 1.School of Economics & Commence; 2.School of Management, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2015-09-17 Online:2016-03-23 Published:2016-03-23

摘要:

研究了一类连续时间广义随机仿射系统的线性二次(Linear Quadratic, LQ)控制问题.在定义了广义随机系统稳定性的相关概念后,通过一个线性矩阵不等式(Linear Matrix Inequality, LMI)给出了系统稳定性的条件.然后,利用Riccati方程法分别研究了有限时间广义随机仿射系统的LQ问题和无限时间广义随机系统的LQ问题,得到了有限时间最优反馈控制的存在条件等价于一个推广的微分Riccati方程和一个推广的倒向微分方程存在解,而对应的无限时间最优反馈控制的存在条件等价于一个推广的代数Riccati方程存在解,同时给出了最优反馈控制的显式表达及最优性能指标值.

关键词: 广义随机仿射系统; 线性二次控制; 线性矩阵不等式; Riccati方程

Abstract:

Linear quadratic control of a class of continuous-time singular stochastic affine systems is investigated. After establishing some concepts of the stability for stochastic singular systems, the condition of the stability is presented by means of a linear matrix inequality. Then, by utilizing Riccati equation approach, the existent conditions of optimal feedback control in finite horizon and infinite horizon are respectively obtained by means of a generalized differential Riccati equation or a generalized algebraic Riccati equation. And explicit expressions of the optimal feedback controls and optimal cost function are given.

Key words: singular stochastic affine systems; linear quadratic control; linear matrix inequality; Riccati equation

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!