广东工业大学学报 ›› 2016, Vol. 33 ›› Issue (02): 51-56.doi: 10.3969/j.issn.1007-7162.2016.02.010

• 综合研究 • 上一篇    下一篇

改进的构建Wi-Fi位置指纹库算法研究

曾碧1,2,毛勤1,2   

  1. 广东工业大学 1.计算机学院;2.广东省物联网与控制专用芯片及系统智能化工程技术研究中心, 广东 广州 510006
  • 收稿日期:2015-05-25 出版日期:2016-03-23 发布日期:2016-03-23
  • 作者简介:曾碧(1963-),女,教授,博士,主要研究方向为嵌入式系统与智能技术、智能计算与智能机器人.
  • 基金资助:

    国家自然科学基金资助项目(61173046);广东省自然科学基金资助项目(S2012040007326)

A Research on Algorithm of Building Wi-Fi Location Fingerprint Database

Zeng Bi 1, 2, Mao Qin 1,2   

  1. 1.School of Computers; 2. Guangdong Provincial Research Center of Internet of Things, Control Special Chip and Intelligent System Engineering Technology, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2015-05-25 Online:2016-03-23 Published:2016-03-23

摘要:

针对传统的位置指纹算法在更新位置指纹库时人力和物力巨大耗费的问题,提出利用压缩传感理论和重心拉格朗日插值算法来更新位置指纹库.压缩传感理论将指纹向量的重构过程转换为一个最小 l0范数的优化问题,并通过最小全变分方法求解原始指纹向量.重心拉格朗日插值算法利用样本节点间的空间相关性,使得在离线阶段通过测量少量指纹就可重建位置指纹库.在真实室内环境的实验验证了压缩传感恢复算法比重心拉格朗日插值算法具有更好的定位性能.

关键词: RSSI; 压缩传感理论; 重心拉格朗日插值算法; 空间相关性; 最小全变分方法

Abstract:

To solve the problem of high cost in updating the fingerprint database in terms of time and effort, the theory of compressed sensing and focus Lagrange interpolation algorithm are proposed in the offline phase. The process of fingerprint vector refactoring is transformed into the problem of minimum  l0 norm optimization by compressed sensing, and total variation is used to recover the original fingerprint vector. Focus Lagrange interpolation algorithm takes the advantage of spatial correlation of sample nodes, by which the fingerprint database can be rebuilt through measuring a small amount of fingerprints. Finally a practical experiment in real indoor environment shows that the theory of compressed sensing achieves higher accuracy than focus Lagrange interpolation algorithm.

Key words: received signal strength indicator(RSSI); the theory of compress sensing; focus Lagrange interpolation algorithm; spatial correlation; total variation

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!