广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (03): 54-58.doi: 10.12052/gdutxb.170016

• 大数据基础理论与应用专题 • 上一篇    下一篇

基于互联网文本挖掘的用户意图感知

杨贤1, 何汉武2   

  1. 1. 广东工业大学 艺术与设计学院, 广东 广州 510009;
    2. 广东工业大学 机电工程学院, 广东 广州 510006
  • 收稿日期:2017-01-15 出版日期:2017-05-09 发布日期:2017-05-09
  • 通信作者: 何汉武(1966-),男,教授,博士,主要研究方向为虚拟现实、人机交互.E-mail:hwhe@gdut.edu.cn E-mail:hwhe@gdut.edu.cn
  • 作者简介:杨贤(1982-),男,助理研究员,在职博士研究生,主要研究方向为认知心理学、人机交互.
  • 基金资助:

    国家自然科学基金资助项目(51275094);广东省部产学研专项资金企业创新平台(2013B090800042)

Internet Text Mining for User Intent Perception

Yang Xian1, He Han-wu2   

  1. 1. School of Art and Design, Guangdong University of Technology, Guangzhou 510009, China;
    2. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2017-01-15 Online:2017-05-09 Published:2017-05-09

摘要:

能否准确感知用户意图是创新设计的关键,传统用户意图研究方法费时费力且容易忽略重要因素.论文提出,用户意图表达的是用户对一个对象的期望集合,而基于该对象分布在互联网的海量数据隐藏着这个集合的所有因素.通过互联网文本挖掘技术获取该用户意图有关的因素,并把这些因素与用户意图等价起来.为了验证它们的等价关系,论文以可穿戴智能设备为研究对象,采用正反问卷法对因素集合的真实度进行测量.同时,论文从多个维度分析了文本挖掘获取因素的科学性,并与传统用户意图研究方法进行交叉对比,研究结果表明基于互联网文本挖掘技术的用户意图求解方案具有可行性且优点较多.论文所用方法适用于所有类似用户意图这种复杂对象的建模与求解.

关键词: 互联网文本挖掘, 因素集合, 用户意图, 认知科学

Abstract:

The accuracy of user intent perception is the key to innovative design. The research methods of traditional user intent are time-consuming and prone to overlooking some of important factors. User intent is proposed to be a factor set of user expectations for an object, and all the factors are hidden in the object-relational massive data distributed on the internet which can be achieved by text mining technology. The equal value relation between user intent and factor set is proved by a pro and con questionnaire survey. Meanwhile, the factors acquired by text mining are testified to have advantage over traditional methods. The feasibility of the above-mentioned proposal is verified by taking wearable intelligent devices as a study, and the result is approving. The method proposed in this paper is applicable to all modeling and solving of complex objects which is similar to user intent.

Key words: Internet text mining, factor set, user intent, cognitive science

中图分类号: 

  • TP391.1

[1] NORMAN D A. The design of everyday things:revised and expanded edition[M]. New York:Basic Books, 2013.
[2] 周美玉, 王倩. 浅析"意象"及其对产品感性设计的作用[J]. 艺术与设计(理论), 2011(3):178-180. ZHOU M Y, WANG Q. Analysis of imagery and its role in perceptual design[J]. Art and Design (theory), 2011(3):178-180.
[3] LOWRY P B, ROBERTS T L, ROMANO JR N C. What signal is your inspection team sending to each other? Using a shared collaborative interface to improve shared cognition and implicit coordination in error-detection teams[J]. International Journal of Human-Computer Studies, 2013, 71(4), 455-474.
[4] TANG H H, LEE Y Y, GERO J S. Comparing collaborative co-located and distributed design processes in digital and traditional sketching environments:A protocol study using the function-behaviour-structure coding scheme[J]. Design Studies, 2011, 32(1), 1-29.
[5] 丁欢, 许柏鸣. 家具造型设计中的感知意象研究现状与进展[J]. 家具与室内装饰, 2013(8):15-17. DING H, XU B M. Statues and progress of research on perception image of furniture form design[J]. Furniture & Interior Design, 2013(8):15-17.
[6] DE VRIES E, MASCLET C. A framework for the study of external representations in collaborative design settings[J]. International Journal of Human-Computer Studies, 2013, 71(1):46-58.
[7] POLANYI M. Personal knowledge:Towards a Post-Critical Philosophy[J]. Philosophy of Science, 1959, 26(3):617-618.
[8] HEYLIGHEN A, NIJS G. Designing in the absence of sight:Design cognition re-articulated[J]. Design Studies, 2014, 35(2):113-132.
[9] ANTUNES P, HERSKOVIC V, OCHOA S F, et al. Reviewing the quality of awareness support in collaborative applications[J]. Journal of Systems and Software, 2014, 89:146-169.
[10] 拉维·莱美, 阿卡里氏·阿帕德, 尼噶. 人类行为解释与转换系统的多通道进化框架研究[J]. 广东工业大学学报, 2016, 33(02):5-14. RAVI L, AKHILESH U, NIGAM S R. Evolving multimodal frameworks for human behavior interpretation and transformation system[J]. Journal of Guangdong University of Technology, 2016, 33(02):5-14.
[11] LOWRY P B, ROBERTS T L, ROMANO JR N C. What signal is your inspection team sending to each other? Using a shared collaborative interface to improve shared cognition and implicit coordination in error-detection teams[J]. International Journal of Human-Computer Studies, 2013, 71(4):455-474.
[12] OSGOOD C, SUCI G, TANNENBAUM P. The measurement of meaning[M]. 1st ed. Illinois:University of Illinois Press, 1957.
[13] HOWARTH J, SMITH-JACKSON T, HARTSON R. Supporting novice usability practitioners with usability engineering tools[J]. International Journal of Human-Computer Studies, 2009, 67(6):533-549.
[14] ALI MAZALEK. Framing tangible interaction frameworks[J]. Artificial Intelligence for Engineering Design Analysis & Manufacturing, 2009, 23(3):225-235.
[15] AGGARWAL C C. Social network data analytics[M]. Berlin:Springer Publishing Company, 2011.
[16] BAEZAYATES R, CALDERÓNBENAVIDES L, GONZÁLEZCARO C. The intention behind Web queries[J]. Lecture Notes in Computer Science, 2006, 4209:98-109.
[17] ZHANG H P, ZHANG R Q, ZHAO Y P, et al. Big Data Modeling and Analysis of Microblog Ecosystem[J]. International Journal of Automation and Computing, 2014, 11(2):119-127.
[18] 贺科达, 朱铮涛, 程昱. 基于改进TF-IDF算法的文本分类方法研究[J]. 广东工业大学学报, 2016, 33(5):49-53. HE K D, ZHU Z T, CHENG Y. A research on text classification method based on improved TF-IDF algorithm[J]. Journal of Guangdong University of Technology, 2016, 33(05):49-53.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!