[1] KENNEDY J, EBERHART R C. Particle swarm optimization [J]. Proc IEEE Int Conf Neural Networks, 1995, 4(8): 1942-1948.
[2] SCHMITT M, WANKA R. Particle swarm optimization almost surely finds local optima[J]. Theoretical Computer Science, 2014, 561: 57-72.
[3] SHI Y, EBERHART R. Modified particle swarm optimizer [C]// IEEE International Conference on Evolutionary Computation Proceedings. Anchorage, Alaska, USA: IEEE Service Center. 1998: 69-73.
[4] 赵志刚, 黄树运, 王伟倩. 基于随机惯性权重的简化粒子群优化算法[J]. 计算机应用研究, 2014, 31(2): 361-363.ZHAO Z G, HUANG S Y, WANG W Q. Simplified particle swarm optimization algorithm based on stochastic inertia weight [J]. Application Research of Computers, 2014, 31(2): 361-363.
[5] 张选平, 杜玉平, 秦国强, 等. 一种动态改变惯性权的自适应粒子群算法[J]. 西安交通大学学报, 2005, 39(10): 1039-1042.ZHANG X P, DU Y P, QIN G Q, et al. Adaptive particle swarm algorithm with dynamically changing inertia weight [J]. Journal of Xi’an Jiaotong University, 2005, 39(10): 1039-1042.
[6] RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255.
[7] P N SUGANTHAN. Particle swarm optimizer with neighborhood operator [C]// Evolutionary Computation. Washington DC, US: Procc IEEE Congr Evol Comput. 1999: 1958-1962.
[8] 任凤鸣, 李丽娟. 改进的PSO算法中学习因子(c1, c2)取值的实验与分析[J]. 广东工业大学学报, 2008, 25(1): 86-89.REN F M, LI L J. Experiment and analysis of the value selection of acceleration coefficients (c1, c2) in PSO method[J]. Journal of Guangdong University of Technology, 2008, 25(1): 86-89.
[9] KENNEDY J, MENDES R. Population structure and particle swarm performance [C]// Evolutionary Computation, CEC’02. Hawaii, US: Congress on Evolutionary Computation. 2002: 1671-1676.
[10] KENNEDY J, MENDES R. Neighborhood topologies in fully informed and best-of-neighborhood particle swarms [J]. IEEE Transactions on Systems Man & Cybernetics Part C, 2006, 36(4): 515-519.
[11] 马胜蓝, 叶东毅, 杨玲玲. 一种新的粒子群拓扑设计准则[J]. 计算机工程, 2015, 41(1): 200-206.MA S L, YE D Y, YANG L L. A new design criteria of particle swarm topology[J]. Computer Engineering, 2015, 41(1): 200-206.
[12] 石松, 陈云. 层次环形拓扑结构的动态粒子群算法[J]. 计算机工程与应用, 2013, 49(8): 1-5.SHI S, CHEN Y. Dynamic particle swarm optimization algorithm with hierarchical ring topology [J]. Computer Engineering and Applications, 2013, 49(8): 1-5.
[13] 方峻, 唐普英, 任诚. 一种基于加权有向拓扑的改进粒子群算法[J]. 计算机技术与发展, 2006, 16(8): 62-65.FANG J, TANG P Y, REN C. A modified particle swarm optimization based on directional weighting Topology [J]. Computer Technology and Development, 2006, 16(8): 62-65.
[14] CHEN Y, PENG W C, JIAN M C. Particle swarm optimization with recombination and dynamic linkage discovery[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society, 2007, 37(6): 1460-1470.
[15] ANDREWS P S. An investigation into mutation operators for particle swarm optimization [C]// Evolutionary Computation. Vancouver, Canada: IEEE Congress on Evolutionary Computation. 2006: 1044-1051.
[16] 张创业, 莫愿斌. 基于协同进化思想的人工鱼和粒子群混合优化算法[J]. 广西民族大学学报: 自然科学版, 2009, 15(1): 74-77.ZHANG C Y, MO Y B. AFSA and PSO hybrid algorithm based on collaborative evolution [J]. Journal of Guangxi University for Nationalities (Natural Science Edition). 2009, 15(1): 74-77.
[17] 周玉光, 曾碧, 叶林锋. 改进粒子群优化算法及其在4G网络基站选址中的应用[J]. 广东工业大学学报, 2015, 32(2): 64-68.ZHOU Y G, ZENG B, YE L F. Improved particle swarm optimization and its application in 4G network base station location [J]. Journal of Guangdong University of Technology, 2015, 32(2): 64-68. |