广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (03): 18-23.doi: 10.12052/gdutxb.180027

• 特约报告 • 上一篇    下一篇

基于聚类算法的MOOCs学习者分类及学习行为模式研究

马飞, 李娟   

  1. 北方民族大学 计算机科学与工程学院, 宁夏 银川 750021
  • 收稿日期:2018-03-05 出版日期:2018-05-09 发布日期:2018-04-26
  • 通信作者: 李娟(1975-),女,副教授,硕士,主要研究方向为数据挖掘、网络安全.E-mail:279007780@qq.com E-mail:279007780@qq.com
  • 作者简介:马飞(1976-),男,副教授,博士,主要研究方向为网络安全、隐私保护、社交网络分析.
  • 基金资助:
    宁夏回族自治区“十三五”重点专业(子项目):网络工程专业及子项目;北方民族大学2016年校级教育教学改革研究重点项目(2016JYZD01)

A Research on the Classification of Learners and Patterns of Learning Behavior Based on Cluster Algorithms under MOOCs’ Environment

Ma Fei, Li Juan   

  1. School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China
  • Received:2018-03-05 Online:2018-05-09 Published:2018-04-26

摘要: 根据MOOCs平台上学习者的学习行为,利用基于离差平方和法的AHC层次聚类算法和K-means非层次聚类算法,对参加MOOCs课程的学习者进行了类别划分.研究和分析了不同类别学习者的学习行为对MOOCs学习效果的影响,并利用卡方检验和单因素方差分析对不同类型的学习者在课程完成率、课程成绩等方面做了详尽的对比分析.针对如何提高学生MOOCs学习效果及MOOCs课程的结构内容设计给出了建议,为进一步在高校中顺利开展MOOCs教育提供借鉴.

关键词: MOOCs (Massive Open Online Courses), 聚类算法, 学习行为, 学习效果, 统计分析

Abstract: The learners who participate in the MOOC are classified by using of AHC and K-means, based on learners' learning behavior on MOOCs platform. Then, the impact of different learning behaviors on the MOOC's learning outcomes are studied and analyzed, and the course completion rate and course grade of different types of learners are compared and analyzed in detail by Chi-square test and one-way ANOVA. Finally, suggestions about how to improve the MOOCs learning effect and the design of the structure and content of MOOCs curricula are given. It also provides the reference for the further development of MOOCs education in colleges and universities.

Key words: MOOCs (Massive Open Online Courses), cluster algorithms, learning behavior, learning effect, statistical analysis

中图分类号: 

  • G434
[1]牟智佳, 武法提. MOOC学习结果预测指标探索与学习群体特征分析[J]. 现代远程教育研究, 2017,(3):58-66.MOU Z J, WU F T. The Exploration of learning outcome prediction indicators and analysis of learning group characteristics for MOOC[J]. Modern Distance Education Research, 2017,(3):58-66.
[2]MARGARYAN A, MANUELA B. Instructional quality of massive open online courses (MOOCs)[J]. Computers & Education, 2015,(80):77-83.
[3]伍育红. 聚类算法综述[J]. 计算机科学, 2015,(6):491-499.WU Y H. General overview on clustering algorithms[J]. Computer Science, 2015,(6):491-499.
[4]ZHU M C, WANG W Z, HUANG J S. Improved initial cluster center selection in K-means clustering[J]. Engineering Computations, 2014, 31(8):1661-1667.
[5]蒋卓轩,张岩,李晓明. 基于MOOC数据的学习行为分析与预测[J]. 计算机研究与发展, 2015, 52(3):614-628.JIANG Z X, ZHANG Y, LI X M. Learning behavior analysis and prediction based on MOOC data[J]. Journal of Computer Research and Development, 2015, 52(3):614-628.
[6]李帅,张岩峰,于戈,等. MOOC平台学习行为数据的采集与分析[J]. 中国科技论文, 2015,(20):2373-2376.LI S, ZHANG Y F, YU G, et al. Learning behavior acquisition and analysis of MOOC[J]. China Science Paper, 2015,(20):2373-2376.
[7]蒋盛益,王连喜.聚类分析研究的挑战性问题[J].广东工业大学学报,2014,31(3):32-38.JIANG S Y, WANG L X. Some challenges in clustering analysis[J].Journal of Guangdong University of Technology, 2014, 31(3):32-38.
[8]LU OWEN H T, HUANG JEFF C H, HUANG ANNA Y Q, et al. Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course[J]. Interactive Learning Environments, 2017, 25(2):220-234.
[1] 冯广, 潘庭锋, 伍文燕. 基于贝叶斯网络模型的在线学习行为分析[J]. 广东工业大学学报, 2022, 39(03): 41-48.
[2] 钟映春, 吕帅, 罗鹏, 简裕涛, 褚千琨. 烤瓷牙内部缺陷的图像检测及其特征统计分析[J]. 广东工业大学学报, 2018, 35(01): 1-5.
[3] 陈继峰, 刘广聪, 彭成平. 一种改进的无线传感器网络DV-Hop定位算法[J]. 广东工业大学学报, 2017, 34(02): 80-85.
[4] 梁仕华, 周世宗, 张朗, 王蒙. 广州东部地区花岗岩残积土物理力学指标统计分析[J]. 广东工业大学学报, 2015, 32(1): 29-33.
[5] 王波, 钟映春, 陈俊彬. 融合AP和GMM的说话人识别方法研究[J]. 广东工业大学学报, 2015, 32(04): 145-149.
[6] 韩坚华. 统计分析系统中的面向对象技术[J]. 广东工业大学学报, 1996, 13(3): 65-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!