广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (04): 10-24.doi: 10.12052/gdutxb.170164
肖白军1, 刘杰1,2, 肖晓兰1, 王启民1
Xiao Bai-jun1, Liu Jie1,2, Xiao Xiao-lan1, Wang Qi-min1
摘要: 冷却方式在切削难加工材料的过程中扮演了一个非常重要的角色,例如加工钛合金.本文对一种称谓“OoW”的冷却方式在AlCrN/AlTiSiN涂层立铣刀加工钛合金Ti-6Al-4V过程中对刀具的切削特性的影响进行了研究.在不同水含量(1.5,3.0,4.5 L/h)润滑油含量(20,30,50 mL/h)和润滑剂类型(1000-20、2000-30合成酯、2000-10脂肪醇)的条件下,对刀具的磨损、切削力、切削温度、工件的表面粗糙度以及切屑形态进行了研究.实验结果表明,低水量(1.5L/h)能显著地提高刀具的切削特性.然而,润滑剂含量以及类型对刀具的切削特性影响不明显.同时,OoW冷却方式与干切、湿切、低温微量润滑3种润滑方式进行了对比.结果显示低含水量(1.5L/h) OoW冷却方式比其他3种冷却方式对刀具磨损最小、磨损率最低,同时工件的表面粗糙度也最小.这归因于OoW冷却方式融合了水的优良冷却特性和油的高润滑性.此外,冷却方式和冷却参数对切屑的形态有影响.
中图分类号:
[1] KIM J, PARK H W. Influence of a large pulsed electron beam (LPEB) on the corrosion resistance of Ti6Al7Nb alloys[J]. Corrosi Sci, 2015, 90(6):153-160. [2] ZHOU Y, ZHANG Q Y, LIU J Q,et al. Wear characteristics of a thermally oxidized and vacuum diffusion heat treated coating on Ti-6Al-4V alloy[J]. Wear, 2015, 9(21):344-345. [3] CHE-HARON C H. Tool life and surface integrity in turning titanium alloy[J]. J Mater Process Technol, 2001, 118(1-3):231-237. [4] LIU J, HAN R. Study on lubricating characteristic and tool wear with water vapor as coolant and lubricant in green cutting[J]. Wear, 2007, 262(3-4):442-452. [5] DAVOODI B, TAZEHKANDI A H. Experimental investigation and optimization of cutting parameters in dry and wet machining of aluminum alloy 5083 in order to remove cutting fluid[J]. J Clean Prod, 2014, 68(3):234-242. [6] DHANANCHEZIAN M, PRADEEP K M. Cryogenic turning of the Ti-6Al-4V alloy with modified cutting tool inserts[J]. Cryogenics, 2011, 51(1):34-40. [7] GIASIN K, AYVAR-SOBERANIS S, HODZIC A. Evaluation of cryogenic cooling and minimum quantity lubrication effects on machining GLARE laminates using design of experiments[J]. J Clean Prod, 2016, 135(1):533-548. [8] LIU J Y, LIU H P, HAN R D, et al. The study on lubrication action with water vapor as coolant and lubricant in cutting ANSI 304 stainless steel[J]. Int J Mach Tools Manuf, 2010, 50(3):260-269. [9] OLIVEIRA D J, GUERMANDI L G. Improving minimum quantity lubrication in CBN grinding using compressed air wheel cleaning[J]. J Mater Process Technol, 2012, 212(12):2559-2568. [10] HUANG X B, ZHANG X M, MOU H, et al. The influence of cryogenic cooling on milling stability. J. Mater. Process[J]. Technol, 2014, 214(12):3169-3178. [11] SUN S J, BRANDT M L, PALANISAMY S, et al. Effect of cryogenic compressed air on the evolution of cutting force and tool wear during machining of Ti-6Al-4V alloy. J. Mater. Process[J]. Technol, 2015, 221:243-254. [12] DHAR N R, PAUL S, CHATTOPADHYAY A B. Role of cryogenic cooling on cutting temperature in turning steel[J]. J Manuf Sci Eng, 2002, 124(1):146-154. [13] GODLEVSK V A. Water steam lubrication during machining[J]. Tribol, 1998, 162:890-901. [14] FAN Y H, HAO Z P, LIN J Q, et al. New observations on tool wear mechanism in machining Inconel 718 under water vaport air cooling lubrication cutting conditions[J]. J Clean Prod, 2015, 90:381-387. [15] LI K M, CHOU S Y. Experimental evaluation of minimum quantity lubrication in near micro-milling. J. Mater. Process[J]. Technol, 2010, 210(15):2163-2170. [16] SARIKAYA M, TAGUCHI G A. design and response surface methodology based analysis of machining parameters in CNC turning under MQL[J]. J Clean Prod, 2014, 65(4):604-616. [17] MEENA A, MANSORI M E. Study of dry and minimum quantity lubrication drilling of novel austempered ductile iron (ADI) for automotive applications[J]. Wear, 2011, 271(9-10):2412-2416. [18] ItOIGAWA F, CHILDS T H C, NAKAMURA T, et al. Effects and mechanisms in minimal quantity lubricationmachining of an aluminum alloy[J]. Wear, 2006, 260(3):339-344. [19] YUAN S M, YAN L T, LIU L Q. Effects of cooling air temperature on cryogenic machining of Ti-6Al-4V alloy[J]. J Mater Process Technol, 2011, 211(3):356-362. [20] VENUGOPAL K A, PAUL S, CHATTOPADHYAY A B. Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling[J]. Wear, 2015, 262(9):1071-1078. [21] XU Q Z, ZHAO J, AI X. Fabrication and cutting performance of Ti(C,N)-based cermet tools used for machining of high-strength steels[J]. Ceramics International, 2017, 43(8):6286-6294. [22] ÇALIŞKAN H, KÜÇÜKKÖSE M. The effect of aCN/TiAlN coating on tool wear, cutting force, surface finish and chip morphology in face milling of Ti6Al4V superalloy[J]. Int J Refract Met Hard Mater, 2015, 50:304-312. [23] JAWAHIR I S, LUTTERVELT C A V. Recent developments in chip control research and applications[J]. CIRP Ann Manuf Technol, 1993, 42(2):659-693. [24] WANG C Y, XIE Y X, ZHENG L J, et al. Research on the Chip Formation Mechanism during the high-speed milling of hardened steel[J]. Int J Mach Tools Manuf, 2014, 79(4):31-48. |
[1] | 刘杰, 朱水生, 肖晓兰, 邓欣. AlCrSiN涂层刀具干车削Ti-6Al-4V钛合金的切削性能研究[J]. 广东工业大学学报, 2021, 38(02): 99-106. |
[2] | 魏昕; 王成勇; 谭哲丽;. PDC刀具切削花岗岩的过程研究[J]. 广东工业大学学报, 1995, 12(S1): 80-85. |
|