广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (04): 10-24.doi: 10.12052/gdutxb.170164

• 综合研究 • 上一篇    下一篇

OoW冷却方式对涂层立铣刀具高速加工钛合金Ti-6Al-4V切削特性的影响

肖白军1, 刘杰1,2, 肖晓兰1, 王启民1   

  1. 1. 广东工业大学 机电工程学院, 广东 广州 510006;
    2. 广州番禺职业技术学院 机电工程学院, 广东 广州 511483
  • 收稿日期:2017-12-05 出版日期:2018-07-09 发布日期:2018-05-24
  • 通信作者: 王启民(1977-),男,教授,博士生导师,中组部"千人计划"入选者,广东省高校"珠江学者"特聘教授,德国洪堡学者,主要研究方向为刀具、模具用硬质涂层和汽车、航空热端部件高温防护涂层.E-mail:qmwang@gdut.edu.cn E-mail:qmwang@gdut.edu.cn
  • 作者简介:肖白军(1975-),男,博士研究生,主要研究方向为刀具、模具用硬质涂层.
  • 基金资助:
    国家自然科学基金资助项目(51522502);中国博士后科学基金资助项目(2016M600641);广东省自然科学基金资助项目(2014A030311002,2016A050502056)

High Speed Machining of Ti-6Al-4V Alloy with PVD Coated Carbide End Mills under Oils on Water Cooling

Xiao Bai-jun1, Liu Jie1,2, Xiao Xiao-lan1, Wang Qi-min1   

  1. 1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. School of Electromechanical Engineering, Guangzhou Panyu Polytechnic, Guangzhou 511483, China
  • Received:2017-12-05 Online:2018-07-09 Published:2018-05-24
  • Supported by:
     

摘要: 冷却方式在切削难加工材料的过程中扮演了一个非常重要的角色,例如加工钛合金.本文对一种称谓“OoW”的冷却方式在AlCrN/AlTiSiN涂层立铣刀加工钛合金Ti-6Al-4V过程中对刀具的切削特性的影响进行了研究.在不同水含量(1.5,3.0,4.5 L/h)润滑油含量(20,30,50 mL/h)和润滑剂类型(1000-20、2000-30合成酯、2000-10脂肪醇)的条件下,对刀具的磨损、切削力、切削温度、工件的表面粗糙度以及切屑形态进行了研究.实验结果表明,低水量(1.5L/h)能显著地提高刀具的切削特性.然而,润滑剂含量以及类型对刀具的切削特性影响不明显.同时,OoW冷却方式与干切、湿切、低温微量润滑3种润滑方式进行了对比.结果显示低含水量(1.5L/h) OoW冷却方式比其他3种冷却方式对刀具磨损最小、磨损率最低,同时工件的表面粗糙度也最小.这归因于OoW冷却方式融合了水的优良冷却特性和油的高润滑性.此外,冷却方式和冷却参数对切屑的形态有影响.

关键词: OoW, 润滑机理, 刀具磨损, 钛合金Ti-6Al-4V

Abstract: The cooling strategy plays an important role during the machining of difficult-to-cut materials, such as titanium alloys. In this work, an oils on water (OoW) cooling was investigated with coated carbide end mills with AlCrN/AlTiSiN coatings during the Ti-6Al-4V alloy machining. Through various amounts of water (1.5, 3 and 4.5 L/h), oil (20, 30, 50 mL/h) and lubricant types (1000-20 and 2000-30 synthetic ester, 2000-10 fatty alcohol), tool wear, cutting force, cutting temperature, the surface roughness and chip morphologies were observed under the OoW cooling condition. The cutting performances were compared for all conditions, where a low amount of water (1.5 L/h) demonstrated significant improvement in the cutting performances of the coated tools, while the lubricants and amount of oil had low effects. The effect of OoW cooling on the cutting performance was also studied in comparison with dry cutting, flood cutting and minimal quantity lubrication with cryogenic air (CAMQL) cooling. For the optimized water amount at 1.5 L/h, the lower tool wear and surface roughness of the machined surface were observed. The wear rate of the coated tool through OoW cooling was also significantly slower compared to dry cutting, flood cutting and CAMQL cooling. The reason for improvement under the OoW cooling condition originated from the improved cooling effect compared to other cooling strategies, due to the excellent combined cooling effect of water and oil lubrication through OoW cooling. In addition, the chip morphology was also observed to be affected by both the cooling strategy and cooling parameters.

Key words: oils on water, lubrication mechanism, tool wear, Ti-6Al-4V alloy

中图分类号: 

  • TG711
[1] KIM J, PARK H W. Influence of a large pulsed electron beam (LPEB) on the corrosion resistance of Ti6Al7Nb alloys[J]. Corrosi Sci, 2015, 90(6):153-160.
[2] ZHOU Y, ZHANG Q Y, LIU J Q,et al. Wear characteristics of a thermally oxidized and vacuum diffusion heat treated coating on Ti-6Al-4V alloy[J]. Wear, 2015, 9(21):344-345.
[3] CHE-HARON C H. Tool life and surface integrity in turning titanium alloy[J]. J Mater Process Technol, 2001, 118(1-3):231-237.
[4] LIU J, HAN R. Study on lubricating characteristic and tool wear with water vapor as coolant and lubricant in green cutting[J]. Wear, 2007, 262(3-4):442-452.
[5] DAVOODI B, TAZEHKANDI A H. Experimental investigation and optimization of cutting parameters in dry and wet machining of aluminum alloy 5083 in order to remove cutting fluid[J]. J Clean Prod, 2014, 68(3):234-242.
[6] DHANANCHEZIAN M, PRADEEP K M. Cryogenic turning of the Ti-6Al-4V alloy with modified cutting tool inserts[J]. Cryogenics, 2011, 51(1):34-40.
[7] GIASIN K, AYVAR-SOBERANIS S, HODZIC A. Evaluation of cryogenic cooling and minimum quantity lubrication effects on machining GLARE laminates using design of experiments[J]. J Clean Prod, 2016, 135(1):533-548.
[8] LIU J Y, LIU H P, HAN R D, et al. The study on lubrication action with water vapor as coolant and lubricant in cutting ANSI 304 stainless steel[J]. Int J Mach Tools Manuf, 2010, 50(3):260-269.
[9] OLIVEIRA D J, GUERMANDI L G. Improving minimum quantity lubrication in CBN grinding using compressed air wheel cleaning[J]. J Mater Process Technol, 2012, 212(12):2559-2568.
[10] HUANG X B, ZHANG X M, MOU H, et al. The influence of cryogenic cooling on milling stability. J. Mater. Process[J]. Technol, 2014, 214(12):3169-3178.
[11] SUN S J, BRANDT M L, PALANISAMY S, et al. Effect of cryogenic compressed air on the evolution of cutting force and tool wear during machining of Ti-6Al-4V alloy. J. Mater. Process[J]. Technol, 2015, 221:243-254.
[12] DHAR N R, PAUL S, CHATTOPADHYAY A B. Role of cryogenic cooling on cutting temperature in turning steel[J]. J Manuf Sci Eng, 2002, 124(1):146-154.
[13] GODLEVSK V A. Water steam lubrication during machining[J]. Tribol, 1998, 162:890-901.
[14] FAN Y H, HAO Z P, LIN J Q, et al. New observations on tool wear mechanism in machining Inconel 718 under water vaport air cooling lubrication cutting conditions[J]. J Clean Prod, 2015, 90:381-387.
[15] LI K M, CHOU S Y. Experimental evaluation of minimum quantity lubrication in near micro-milling. J. Mater. Process[J]. Technol, 2010, 210(15):2163-2170.
[16] SARIKAYA M, TAGUCHI G A. design and response surface methodology based analysis of machining parameters in CNC turning under MQL[J]. J Clean Prod, 2014, 65(4):604-616.
[17] MEENA A, MANSORI M E. Study of dry and minimum quantity lubrication drilling of novel austempered ductile iron (ADI) for automotive applications[J]. Wear, 2011, 271(9-10):2412-2416.
[18] ItOIGAWA F, CHILDS T H C, NAKAMURA T, et al. Effects and mechanisms in minimal quantity lubricationmachining of an aluminum alloy[J]. Wear, 2006, 260(3):339-344.
[19] YUAN S M, YAN L T, LIU L Q. Effects of cooling air temperature on cryogenic machining of Ti-6Al-4V alloy[J]. J Mater Process Technol, 2011, 211(3):356-362.
[20] VENUGOPAL K A, PAUL S, CHATTOPADHYAY A B. Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling[J]. Wear, 2015, 262(9):1071-1078.
[21] XU Q Z, ZHAO J, AI X. Fabrication and cutting performance of Ti(C,N)-based cermet tools used for machining of high-strength steels[J]. Ceramics International, 2017, 43(8):6286-6294.
[22] ÇALIŞKAN H, KÜÇÜKKÖSE M. The effect of aCN/TiAlN coating on tool wear, cutting force, surface finish and chip morphology in face milling of Ti6Al4V superalloy[J]. Int J Refract Met Hard Mater, 2015, 50:304-312.
[23] JAWAHIR I S, LUTTERVELT C A V. Recent developments in chip control research and applications[J]. CIRP Ann Manuf Technol, 1993, 42(2):659-693.
[24] WANG C Y, XIE Y X, ZHENG L J, et al. Research on the Chip Formation Mechanism during the high-speed milling of hardened steel[J]. Int J Mach Tools Manuf, 2014, 79(4):31-48.
[1] 刘杰, 朱水生, 肖晓兰, 邓欣. AlCrSiN涂层刀具干车削Ti-6Al-4V钛合金的切削性能研究[J]. 广东工业大学学报, 2021, 38(02): 99-106.
[2] 魏昕; 王成勇; 谭哲丽;. PDC刀具切削花岗岩的过程研究[J]. 广东工业大学学报, 1995, 12(S1): 80-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!