广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (06): 63-68.doi: 10.12052/gdutxb.180001

• • 上一篇    下一篇

基于统一理论的钢管混凝土拱桥稳定性分析

刘铭炜, 禹智涛, 贺绍华   

  1. 广东工业大学 土木与交通工程学院, 广东 广州 510006
  • 收稿日期:2018-01-03 出版日期:2018-11-23 发布日期:2018-09-12
  • 通信作者: 贺绍华(1989-),男,讲师,博士,主要研究方向为基于高性能材料的桥梁结构.E-mail:hesh@gdut.edu.cn E-mail:hesh@gdut.edu.cn
  • 作者简介:刘铭炜(1992-),男,硕士研究生,主要研究方向为大跨度桥梁稳定性.
  • 基金资助:
    国家自然科学基金资助项目(51508109)

A Stability Analysis of Steel Tube Concrete Arch Bridge Based on Unified Theory

Liu Ming-wei, Yu Zhi-tao, He Shao-hua   

  1. School of Civil Engineering and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2018-01-03 Online:2018-11-23 Published:2018-09-12

摘要: 基于GB 50923-2013及JTG/T D65-06-2015两种钢管混凝土拱桥规范对拱肋刚度取值的差异,利用15组钢管与混凝土组合依据两种规范规定的方法计算拱肋刚度,并利用ANSYS分别基于两种拱肋刚度取值方法模拟单拱肋试验,分析两种规范对拱肋刚度取值的合理性. 最后以一标准钢管混凝土拱桥为对象,利用统一理论建立有限元模型,分析横撑对其稳定性的影响. 结果表明:两种规范对拱肋刚度的计算结果误差在10%以内;利用ANSYS采用统一理论模拟单拱肋比采用双单元法建模更为方便快捷,且模拟结果更符合试验结果. 横撑形式为“X”撑时,拱桥稳定系数比“H”撑、“K”撑及“一”字撑分别高出4.3%、0.6%及17.8%;横撑数量由0增加到2时,标准钢管混凝土拱桥稳定系数提高41.2%,提高速率最快且继续增加横撑数量,而稳定系数提高速率有所降低;在1/4跨至5/8跨之间设置横撑可以使钢管混凝土拱桥稳定性达到最优的效果.

关键词: 钢管混凝土拱桥, 统一理论, 稳定性分析, ANSYS

Abstract: Difference of arch rib stiffness based on two concrete-filled steel tube arch bridge standard of GB 50923-2013 and JTG/T D65-06-2015, 15 groups of steel tubes and concrete according to the method of two specifications were calculated. In order to analyze rationality of the two specifications of arch rib stiffness, the FEM analysis of ANSYS was used to simulate a single arch rib. Finally, a standard steel tube concrete arch bridge was used to establish the finite element model and analyze the influence of horizontal bracing on its stability. The results indicate that the error of the calculation result of the rigidity of the arch rib is within 10%. The single arch rib simulated by ANSYS using the unified theory is more convenient and faster than using the double-element method, and the result of simulation is more consistent with the test result. The stability coefficient of arch bridge by using "X" brace is 4.3%, 0.6% and 17.8% higher than that of "H" brace, "K" brace and "一" brace respectively. When the number of bracing increased from zero to 2, the stability coefficient of standard CFST arch bridge increased by 41.2%, and the rate of increase was the highest. The number of bracing continued to increase, while the improvement rate of stability coefficient decreased. The bracing built between the span of 1/4 and 5/8 can make the stability of CFST arch bridge achieve the best effect.

Key words: concrete-filled steel tubes arch bridge, the unified theory, stability analysis, ANSYS

中图分类号: 

  • TU318
[1] 陈宝春. 钢管混凝土拱桥发展综述[J]. 桥梁建设, 1997(2):10-15 CHEN B C. A summarized account of developments in concrete-filledsteel tube arch bridge[J]. Bridge Construction, 1997(2):10-15
[2] HAN L H, REN Q X, LI W. Tests on inclined, tapered and STS concrete-filled steel tubular (CFST) stub columns[J]. Journal of Constructional Steel Research, 2010, 66(10):1186-1195
[3] 陈宝春. 钢管混凝土拱桥[M]. 3版. 北京:人民交通出版社, 2016.
[4] 王卫琴, 陈宇文. 哑铃型钢管混凝土柱的面内弹塑性分析[J]. 广东工业大学学报, 2006, 23(3):62-66 WANG W Q, CHEN Y W. The elastic-plastic analysis of the surface of the dumbbell steel tubular columns[J]. Journal of Guangdong University of Technology, 2006, 23(3):62-66
[5] WANG X, ZHOU S. Effect study of initial stress on bearing capacity of dumbbell-shaped CFST bridge[C]//Second International Conference on Mechanic Automation and Control Engineering. Inner Mongolia, China:IEEE, 2011:6460-6463.
[6] SONG F, WU Q. Effects of crossbars on the lateral elastic stability of lift-basket CFST truss rib arch bridge[J]. Journal of Shenyang Jianzhu University, 2014, 30(5):850-855
[7] 中华人民共和国国家标准. 钢管混凝土拱桥技术规范:GB50923-2013[S]. 北京:中国计划出版社, 2013.
[8] 中华人民共和国行业推荐性标准. 公路钢管混凝土拱桥设计规范:JTG/T D65-06-2015[S]. 北京:人民交通出版社, 2015.
[9] 陈宝春, 盛叶. 钢管混凝土哑铃形拱面内极限承载力研究[J]. 工程力学, 2009, 26(9):94-104 CHEN B C, SHENG Y. Study on ultimate bearing capacity of steel tube concrete dumbbell shape arch surface[J]. Engineering Mechanics, 2009, 26(9):94-104
[10] 钟善桐. 钢管混凝土统一理论——研究与应用[M]. 北京:清华大学出版社, 2006.
[11] 李自林, 张德龙, 韦有波, 等. 脱空对上承式钢管混凝土拱桥整体稳定性能的影响[J]. 天津城建大学学报, 2017, 23(1):11-16 LI Z L, ZHANG D L, WEI Y B et al. Analysis on the influence of disengaging on the global stability of concrete-filledsteel tube deck arch bridge[J]. Journal of Tianjin Chengjian University, 2017, 23(1):11-16
[12] 陈宝春, 秦泽豹, 彦坂熙, 等. 钢管混凝土拱(单圆管)面内受力双重非线性有限元分析[J]. 铁道学报, 2003, 25(4):80-84 CHEN B C, QIN Z B, YAN B X, et al. Analysis of concrete filled steel tubular (single tube) arch subjected to in-plane loads by nonlinear finite element method[J]. Journal of The China Rail Way Society, 2003, 25(4):80-84
[13] 韩林海. 钢管混凝土结构——理论与实践[M]. 北京:科学出版社, 2004.
[14] 黄永辉. 钢管混凝土拱桥拱肋病害机理与影响分析及吊杆更换技术研究[D]. 广州:华南理工大学土木与交通学院, 2010.
[15] 陈礼榕, 陈宝春. 钢管混凝土哑铃形截面标准拱面外稳定分析[J]. 郑州大学学报(工学版), 2015, 36(6):123-128 CHEN L R, CHEN B C. Analysis of out-of-plane stability of standard concrete-filled steel tube dumbbell-shaped rib arch[J]. Journal of Zhengzhou University (Engineering Edition), 2015, 36(6):123-128
[1] 刘陈霖, 郑三强, 韩晓卓. 具有Allee效应捕食-竞争系统的时空动态分析[J]. 广东工业大学学报, 2019, 36(06): 38-44.
[2] 赖志平, 汪新. 某会展中心建筑表面风压分布的数值模拟[J]. 广东工业大学学报, 2014, 31(2): 78-84.
[3] 刘昆,彭美春,林怡青,王海龙. 基于ANSYS Workbench鼓式制动器冲焊蹄的有限元分析[J]. 广东工业大学学报, 2013, 30(1): 92-96.
[4] 孙尚; 刘海军; . Schwedler型球面网壳优化设计[J]. 广东工业大学学报, 2007, 24(03): 96-99.
[5] 陈宇文; 王卫琴;. 大跨度钢管砼拱桥空间地震响应分析[J]. 广东工业大学学报, 2006, 23(2): 114-121.
[6] 张敏; 郑家骧; . 不同生物瓣型面应力的有限元分析[J]. 广东工业大学学报, 2004, 21(4): 42-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!