广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (03): 56-67.doi: 10.12052/gdutxb.180157

• 综合研究 • 上一篇    下一篇

受风险偏好影响的旅行社收益纳什均衡模型

何柳君, 杨理平   

  1. 广东工业大学 应用数学学院, 广东 广州 510520
  • 收稿日期:2018-11-21 出版日期:2019-05-09 发布日期:2019-04-04
  • 作者简介:何柳君(1990-),女,硕士研究生,主要研究方向为供应链管理.
  • 基金资助:
    国家自然科学基金资助项目(61374081);教育部人文社科规划基金资助项目(14YJAZH095);广东省自然科学基金资助项目(2015A030313485);广州市科学计划项目(20170710494)

A Nash Equilibrium Model of Travel Agency Affected by the Risk Appetite

He Liu-jun, Yang Li-ping   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2018-11-21 Online:2019-05-09 Published:2019-04-04

摘要: 构建了在两种货币政策下和受风险偏好程度不同的影响下,旅行社采取不同融资策略的收益纳什均衡模型.还构建了包含收益效用与融资效用的效用函数.通过探究在不同的融资策略下,根据旅行社的均衡质量、数量与个性化来计算出收益,提出了均衡条件并用变分不等式证明了均衡解的存在性,提供了有关线上销售公司的旅游产品的案例分析.

关键词: 纳什均衡, 收益, 变分不等式, 风险偏好, 货币政策

Abstract: A revenue Nash Equilibrium model is constructed among the travel agencies which adopt different financing strategies and are affected by risk appetite under two kinds of monetary policies. The utility function contains a revenue component and a financing component. An equilibrium revenue can be calculated by exploring an equilibrium quality, quantity and individuation of the travel agencies which adopt different financing strategies. The governing Nash equilibrium conditions are stated and the variational inequality formulation provided to establish existence of the equilibrium solutions. Numerical case studies are also conducted on the tourist products of online sales companies.

Key words: Nash equilibrium, revenue, variational inequality, risk appetite, monetary policy

中图分类号: 

  • O225
[1] CALDENTEY R, CHEN X. The role of financial services in procurement contracts[C]//KOUVELIS P. Handbook of Integrated Risk Mange Global Supply Chains. Canada:Wiley, 2010, 289-326.
[2] KOUVELIS P, ZHAO W. Financing the news vendor:suppler vs. bank, and the structure of optimal trade credit contracts[J]. Operations Research, 2012, 60(3):566-580
[3] LI Y, ZHEN X, QI X, et al. Penalty and financial assistance in a supply chain with supply disruption[J]. Omega, 2016, 61:167-181
[4] NAGURNEY A, LI D. A dynamic network oligopoly model with transportation costs, product differentiation, and quality competition[J]. Computational Economics, 2014, 44(2):201-229
[5] NAGURNEY A, LI D. A supply chain network game theory model with product differentiation, outsourcing of production and distribution, and quality and price competition[J]. Annals of Operations Research, 2015, 228(1):479-503
[6] 朱莹, 张成科, 朱怀念. 基于演化博弈的供应链成员间研发竞争与合作分析[J]. 广东工业大学学报, 2015, 32(3):46-50 ZHU Y, ZHANG C K, ZHU H N. R & D competition and cooperation among members in supply chain based on evolutionary game[J]. Journal of Guangdong University of technology, 2015, 32(3):46-50
[7] BARBAGALLO A, DANIELE P, GIUFFRE S, et al. Varitiational approach for a general financial equilibrium problem:the deficit formula, the balance law and the liability formula. A path to economy recovery my recovery[J]. European Journal Operational Research, 2014, 237(1):231-244
[8] SABERI S, CRUZ J M, SARKIS J. A competitive multiperiod supply chain network model with freight carriers and green technology investment option[J]. European Journal of Operational Research, 2018, 226(3):934-949
[9] NAGURNEY A, YU M, BESIK D. Supply chain capacity competition with outsourcing:a variational equilibrium framework[J]. Journal of Global optimization, 2017, 69(1):231-254
[10] NASH J F. Equilibrium points in n-person games[J]. Proceeding of National Academy of Sciences of the United States of America (PNAS), 1950, 36(1):48-49
[11] NASH J F. Non-cooperative games[J]. Annals of Mathematics, 1951, 54(2):286-298
[12] GABAY D, H MOULIN. On the uniqueness and stability of nashi equilibria in Non-cooperative games[J]. Applied Stochastic Control in Econome trics and Management Science, 1980, 9:271-294
[13] NAGURNEY A, LI D. Competing on Supply Chain Quality:A Network Economics Perspective[M]. Switzerland:Springer International Publishing, 2016:27-42.
[14] KINDERLEHRER D. STAMPACCHIA G. Introduction to Vartiational Inequalities and their application[M]. New York:Academic Press, 1980:8-18.
[15] NAGURNEY A, KAREN LI. Hospital competition in prices and quality:A variational inequality framework[J]. Operations Research for Health Care, 2017, 15:91-101
[16] JAHN J. Introduction to the Theory of Nonlinear Optimization[M]. Berlin, Germany:Springer Verlag, 1994:7-29.
[1] 李莎莎, 崔铁军. 综合操作者与管理者行为博弈的系统收益分析方法研究[J]. 广东工业大学学报, 2021, 38(04): 35-40.
[2] 杨兴雨, 刘伟龙, 井明月, 张永. 基于模糊收益率的分散化投资组合调整策略[J]. 广东工业大学学报, 2020, 37(05): 13-21.
[3] 谷爱玲;. 广义预变分不等式的gap函数[J]. 广东工业大学学报, 2008, 25(2): 26-28.
[4] 钱艳英; . 项目投资决策方法——贴现现金流量指标的理论分析[J]. 广东工业大学学报, 2003, 20(3): 92-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!