广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (02): 53-59.doi: 10.12052/gdutxb.190117

• 综合研究 • 上一篇    下一篇

燃气冷却式温差发电烤炉的实验研究

黄金1,2, 周华1, 刘楷钊1, 萧辉武1, 胡艳鑫1   

  1. 1. 广东工业大学 材料与能源学院, 广东 广州 510640;
    2. 肇庆学院 环境与化学工程学院, 广东 肇庆 526061
  • 收稿日期:2019-09-27 出版日期:2020-03-10 发布日期:2020-01-13
  • 通信作者: 胡艳鑫(1986-),男,讲师,主要研究方向为强化沸腾传热,E-mail:hyanxin825@gdut.edu.cn E-mail:hyanxin825@gdut.edu.cn
  • 作者简介:黄金(1975-),男,教授,博士,主要研究方向为新型能源材料与储能技术、热利用及转换技术
  • 基金资助:
    国家自然科学基金资助项目(51876044);广东省自然科学基金资助项目(2018A030310515)

An Experimental Study of Gas-Cooled Thermoelectric Power Generation Stove

Huang Jin1,2, Zhou Hua1, Liu Kai-zhao1, Xiao Hui-wu1, Hu Yan-xin1   

  1. 1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510640, China;
    2. School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
  • Received:2019-09-27 Online:2020-03-10 Published:2020-01-13

摘要: 能源问题和环境问题已经成为各国不得不面对的社会问题,基于塞贝克效应设计了一种温差发电燃气烤炉,将余热转换成电能,利用燃气的冷能维持温差发电芯片冷热端温差,同时预热了燃气。搭建实验平台测试了温差发电燃气烤炉的温差发电模块温度曲线、电能输出特性和预热对烤炉热效率的提升,该温差发电烤炉可输出功率为2.9 W,燃气经预热后烤架温度平均上升31.9℃,结果表明所设计的温差发电烤炉系统较好地利用温差发电芯片的热电转化能力,可维持用电器正常运转,达到使用要求。

关键词: 温差发电, 燃气烤炉, 余热, 燃气冷能, 热效率

Abstract: Energy and environmental issues have become social problems. A thermoelectric gas stove based on Seebeck effect is designed, which converts waste heat from the stove into electric energy. Combined with this design, the cold energy of gas is used to maintain the temperature difference between the hot and cold sides of the thermoelectric generator, and preheats the gas at the same time. Temperature curve of thermoelectric generator module, the power output characteristic and the improvement of thermal efficiency by preheating have been experimentally studied. The results show that the electric power supply is 2.9 W, and the average grill temperature rises by 31.9℃ after the gas is preheated.

Key words: thermoelectric generation, gas stove, waste heat, cold energy of gas, thermal efficiency

中图分类号: 

  • TM619
[1] 王益烜. 中国能源统计年鉴2017[M]. 北京:中国统计出版社, 2017.
[2] 石宝珩, 薛超. 科技攻关与中国天然气工业发展[J]. 石油勘探与开发, 2009, 36(3):257-263 SHI B H, XUE C. Key scientific and technological problems tackling and China's natural gas industry development[J]. Petroleum Exploration and Development, 2009, 36(3):257-263
[3] 赵东江, 马松燕. 废旧锌锰电池回收利用的研究现状[J]. 中国资源综合利用, 2006, 24(3):14-19 ZHAO D J, MA S Y. Status of recovery and utilizaion of waste used Zn-Mn battery[J]. China Resources Comprehensive Utilization, 2006, 24(3):14-19
[4] TOCCI L, PAL T, PESMAZOGLOU I, et al. Small scale organic rankine cycle (Orc):a techno-economic review[J]. Energies, 2017, 10(4):413
[5] TARTAKOVSKY L, SHEINTUCH M. Fuel reforming in internal combustion engines[J]. Progress in Energy and Combustion Science, 2018, 67:88-114
[6] 张峰. 温差发电技术的研究进展及现状[J]. 通信电源技术, 2016, 33(6):176-176, 194 ZHANG F. Research progress and current status of temperature gap power generation technology[J]. Telecom Power Technology, 2016, 33(6):176-176, 194
[7] ZHAO L D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508(7496):373-377
[8] BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416):414-418
[9] ZHAO L D, TAN G, HAO S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe[J]. Science, 2016, 351(6269):141-144
[10] ZHAO D, TAN G. A review of thermoelectric cooling:materials, modeling and applications[J]. Applied Thermal Engineering, 2014, 66(1-2):15-24
[11] ORR B, AKBARZADEH A, MOCHIZUKI M, et al. Review of car waste heat recovery systems utilizing thermoelectric generators and heat pipes[J]. Applied Thermal Engineering, 2016, 101:490-495
[12] 周武洋, 王勇. 冷热端不同散热方式对热电制冷性能的影响[J]. 中国科学院大学学报, 2019, 36(2):162-168 ZHOU W Y, WANG Y. Effects of different convective conditions at cooling and heating ends on the performance of thermoelectric refrigeration[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(2):162-168
[13] MONTECUCCO A, SIVITER J, KNOX A R. A combined heat and power system for solid-fuel stoves using thermoelectric generators[J]. Energy Procedia, 2015, 75:597-602
[14] MONTECUCCO A, SIVITER J, KNOX A R. Combined heat and power system for stoves with thermoelectric generators[J]. Applied Energy, 2017, 185:1336-1342
[15] NAJJAR Y S H, KSEIBI M M. Heat transfer and performance analysis of thermoelectric stoves[J]. Applied Thermal Engineering, 2016, 102:1045-1058
[16] CHAMPIER D, BEDECARRATS J P, RILETTOI M, et al. Thermo-electric power generation from biomass cook stoves[J]. Energy, 2010, 35(2):935-942
[17] MAL R, PRASAD R, VIJAY V K. Multi-functionality clean biomass cookstove for off-grid areas[J]. Process Safety and Environmental Protection, 2016, 104:85-94
[18] SORNEK K, FILIPOWICAZ M, RZEPKA K. The development of a thermoelectric power generator dedicated to stove-fire places with heat accumulation systems[J]. Energy Conversion and Management, 2016, 125:185-193
[19] 李国能, 朱凌云, 郑友取, 等. 一种便携式温差发电炉的实验研究[J]. 科学通报, 2017, 62(11):1191-1197 LI G N, ZHU L Y, ZHENG Y Q, et al. Experimental study on a potable thermoelectric power generating stove[J]. Chinese Science Bulletin, 2017, 62(11):1191-1197
[20] 李国能, 毕琛, 朱凌云, 等. 采用生物质燃料的温差发电热电联供系统[J]. 浙江电力, 2019, 38(01):11-17 LI G N, BI C, ZHU L Y, et al. Combined heat and power system based on bio-fueled thermoelectric generator[J]. Zhejiang Electric Power, 2019, 38(01):11-17
[21] 朱凌云, 李国能, 康泰云, 等. 基于生物质燃料的水冷式温差发电机的实验研究[J]. 发电技术, 2019, 40(2):148-154 ZHU L Y, LI G N, KANG T Y, et al. Experimental study on a water cooled thermoelectric generator based on biomass fuel[J]. Power Generation Technology, 2019, 40(2):148-154
[22] LI G N, ZHANG S, ZHENG Y Q, et al. Experimental study on a stove-powered thermoelectric generator (steg) with self starting fan cooling[J]. Renewable Energy, 2018, 121(6):502-512
[23] 谢泽扬, 黄金, 李定昌, 等. 聚光太阳电池联合温差发电系统实验研究[J]. 广东工业大学学报, 2016, 33(2):66-70 XIE Z Y, HUANG J, LI D C, et al. Experimental study of concentrator solar cells integrated with thermoelectric generators[J]. Journal of Guangdong University of Technology, 2016, 33(2):66-70
[24] 王长宏, 林涛, 林明标, 等. 太阳能温差发电系统热电性能的分析[J]. 广东工业大学学报, 2011, 28(2):47-50 WANG C H, LIN T, LIN M B, et al. Analysis of thermoelectric properties of the solar thermal power system[J]. Journal of Guangdong University of Technology, 2011, 28(2):47-50
[1] 邱观福, 罗向龙, 陈健勇, 杨智, 陈颖. 考虑环境温度变工况的分液冷凝有机朗肯循环系统优化设计[J]. 广东工业大学学报, 2019, 36(06): 99-104,110.
[2] 卢梓健, 黄金, 胡艳鑫, 王海, 陈友鹏. 滑移式线性菲涅尔太阳能集热器的设计及实验研究[J]. 广东工业大学学报, 2019, 36(05): 86-93.
[3] 康瑞丽, 罗向龙, 黄晓健, 陈颖. 膜蒸馏与工艺余热网络集成系统的热经济分析[J]. 广东工业大学学报, 2018, 35(02): 11-18.
[4] 谢泽扬,黄金,李定昌,王海. 聚光太阳电池联合温差发电系统实验研究[J]. 广东工业大学学报, 2016, 33(02): 66-70.
[5] 王长宏, 林涛, 林明标, 钟达亮. 太阳能温差发电系统热电性能的分析[J]. 广东工业大学学报, 2011, 28(2): 47-50.
[6] 陈观生; 史保新; 吴桂炎; . 厨房余热回收热泵的试验研究[J]. 广东工业大学学报, 2006, 23(1): 52-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!