广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (02): 60-66.doi: 10.12052/gdutxb.190132

• 综合研究 • 上一篇    下一篇

平面机构自由度求解中低副高代去除轨迹点重合虚约束

张晓伟, 林秀君, 郑玲利, 潘继生, 唐文艳, 成思源   

  1. 广东工业大学 机电工程学院, 广东 广州 510006
  • 收稿日期:2019-10-28 出版日期:2020-03-10 发布日期:2020-01-13
  • 通信作者: 林秀君(1968-),女,讲师,硕士,主要研究方向为机械设计及理论等,E-mail:zxwei@gdut.edu.cn E-mail:zxwei@gdut.edu.cn
  • 作者简介:张晓伟(1977-),女,讲师,博士,主要研究方向为创新理论、现代模型设计等
  • 基金资助:
    广东省本科高校高等教育教学改革项目(粤教高函〔2016〕233号);广东工业大学教育教学改革项目(广工大教字(2016)60号);广东工业大学“本科教学工程”项目(广工大教字(2016)54号)

Removal of Redundant Constraints of Trajectory Coincidence by Substituting Lower Pair Mechanism by Higher Pair Mechanism in the Calculation of Degree of Freedom in Planar Mechanisms

Zhang Xiao-wei, Lin Xiu-jun, Zheng Ling-li, Pan Ji-sheng, Tang Wen-yan, Cheng Si-yuan   

  1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-10-28 Online:2020-03-10 Published:2020-01-13

摘要: 针对平面机构自由度求解中轨迹点重合的虚约束问题,提出低副高代的虚约束去除方法。对轨迹点重合的虚约束在平面运动副中的存在情况进行分析,以椭圆仪机构和齿轮直线机构为例,对其存在的位置进行分析,并进一步研究去除该虚约束的机构方案。结果表明:若平面机构中存在轨迹点重合的虚约束,该轨迹点重合的虚约束并不存在于某个固定的运动副上;在两构件距离不变的两点间加入构件和运动副类虚约束是轨迹点重合虚约束的特例;在不减少构件数目的情况下可以采用将转动低副变成平面高副,去除轨迹点重合虚约束。

关键词: 平面机构, 自由度, 轨迹重合, 虚约束, 低副高代

Abstract: Aiming at the redundant constraints of trajectory coincidence in the calculation of degree of freedom in planar mechanisms, substituting lower pair mechanism by higher pair mechanism method is proposed to remove them. The existence of redundant constraints of trajectory coincidence in revolute pair, prismatic pair and planar higher pair is analyzed. Taking elliptic mechanism and gear-linear mechanism as examples, the locations of redundant constraints of trajectory coincidence in mechanism pairs are analyzed, and the design of the mechanism scheme without the redundant constraints further studied. The results suggest that if there are redundant constraints of the trajectory coincidence in planar mechanism, the constraints do not exist on a fixed pair; the redundant constraint caused by adding a link with two revolute pairs at two points on two different links with fixed distance is an special case of the redundant constraints of the trajectory coincidence; without reducing the number of links, the redundant constraints of trajectory coincidence can be removed by changing the revolute pair into the planar higher pair.

Key words: planar mechanism, degree of freedom, trajectory coincidence, redundant constraint, substitution of lower pair mechanism by higher pair mechanism

中图分类号: 

  • TH112.1
[1] 孙桓, 陈作模, 葛文杰. 机械原理[M]. 8版. 北京:高等教育出版社, 2013.
[2] 杨可帧, 程光蕴. 机械设计基础[M]. 6版. 北京:高等教育出版社, 2014.
[3] 张国英, 姜浩, 张涛, 等. 三自由度类球面并联机构的动力学建模及分析[J]. 广东工业大学学报, 2018, 35(6):24-30 ZHANG G Y, JIANG H, ZHANG T, et al. Dynamic modeling and analysis of 3-DOF spheroid parallel mechanism[J]. Journal of Guangdong University of Technology, 2018, 35(6):24-30
[4] 郭卫东. 机械原理[M]. 2版. 北京:科学出版社, 2013.
[5] 张策. 机械原理与机械设计[M]. 北京:机械工业出版社, 2004.
[6] 申永胜. 机械原理教程[M]. 2版. 北京:清华大学出版社, 2006.
[7] 韩建友, 杨通, 于靖军. 高等机构学[M]. 2版. 北京:机械工业出版社, 2015, 9-18.
[8] 郭卫东, 于靖军. 一种计算平面机构自由度的新方法[J]. 机械工程学报, 2013, 49(7):125-129 GUO W D, YU J J. A new method of mobility calculation for planar mechanisms[J]. Journal of Mechanical Engineering, 2013, 49(7):125-129
[9] 佟士懋. 探讨利用速度瞬心法鉴别平面机构的虚约束[J]. 北京联合大学学报, 2011, 25(1):41-45 TONG S M. Identification of redundant constraint(s) in a planar mechanism using either the graph of instantaneous centers or the property of the graph's adjacency matrix[J]. Journal of Beijing Union University, 2011, 25(1):41-45
[10] 冯永伟, 钱瑞明. 机构自由度计算中虚约束问题探析[J]. 机械设计与制造工程, 1999, 20(3):241-244 FENG Y W, QIAN R M. Study on counting of virtual constraint degrees in mechanism[J]. Machinery Design & Manufacture, 1999, 20(3):241-244
[11] 张敏. 虚约束消除方法的研究[J]. 新疆石油学院学报, 2003, 15(2):63-67 ZHANG M. Study on removal of false restraint[J]. Journal of Xinjiang Petroleum Institute, 2003, 15(2):63-67
[12] 吴文兵, 张云秀. 平面机构自由度的计算[J]. 装备制造技, 2016(4):266-268 WU W B, ZHANG Y X. The calculation of degrees of freedom of planar mechanism[J]. Equipment Manufacturing Technology, 2016(4):266-268
[13] 赵燕, 王琨, 李硕. 平面机构自由度计算中几个问题的探讨[J]. 机械管理开发, 2009, 24(6):36-37 ZHAO Y, WANG K, LI S. Discussion on the calculation of plane-mechanism movement's number[J]. Mechanical Management and Development, 2009, 24(6):36-37
[14] 于晓红, 邱丽芳, 韩建友, 等. 特殊情况下机构自由度的计算方法[J]. 机械, 2001, 28(6):20-21 YU X H, QIU L F, HAN J Y, et al. The calculation of degrees of freedom of mechanism in special conditions[J]. Machinery, 2001, 28(6):20-21
[15] 陈再良, 彭玉成, 刘彦昌. 关于三心定理应用中若干问题的探讨[J]. 青岛化工学院学报, 1999, 20(3):241-244 CHEN Z L, PENG Y C, LIU Y C. On some problems in application of three-link theorem[J]. Journal of Qingdao Institute of Chemical Technology, 1999, 20(3):241-244
[16] 黄真, 刘婧芳, 李艳文. 论机构自由度[M]. 北京:科学出版社, 2011.
[1] 潘雅健; 汤铁城; . H2O-C2H5OH 恒沸混合物组分数讨论中的正确方法[J]. 广东工业大学学报, 1997, 14(2): 56-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!