广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (04): 69-74.doi: 10.12052/gdutxb.190162
阳倩, 王琦
Yang Qian, Wang Qi
摘要: Gompertz方程常用于描述种群动态和肿瘤生长, 本文研究了一类延迟Gompertz方程的振动性。首先利用泰勒公式线性化该方程, 再对线性方程应用线性θ方法得到其差分格式。其次, 运用振动理论分别分析线性化后的方程和所得差分格式。在研究方程数值解的振动性时, 把差分方程中θ的取值范围分为2部分, 通过分析差分方程的特征方程的解的性质, 得到延迟Gompertz方程的解析解和数值解振动的充分条件,最后进行数值实验验证。
中图分类号:
[1] HUANG M G, LUO J W, HU L C, et al. Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations [J]. Journal of Theoretical Biology, 2018, 440: 1-11 [2] MISRA A K, RAI R K, TAKEUCHI Y. Modeling the effect of time delay in budget allocation to control an epidemic through awareness [J]. International Journal of Biomathematics, 2018, 11(2): 53-62 [3] SONG P F, XIAO Y N. Global hopf bifurcation of a delayed equation describing the lag effect of media impact on the spread of infectious disease [J]. Journal of Mathematical Biology, 2018, 76(5): 1249-1267 [4] LIU H J, ZHANG J F. Dynamics of two time delays differential equation model to HIV latent infection [J]. Physica A: Statistical Mechanics and Its Applications, 2019, 514: 384-395 [5] RAMEH R B, CHERRY E M, SANTOS R W. Single-variable delay-differential equation approximations of the Fitzhugh-Nagumo and Hodgkin-Huxley models [J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 82: 105066-105077 [6] MITRA R K, BANIK A K, DATTA T K, et al. Nonlinear roll oscillation of semisubmersible system and its control [J]. International Journal of Non-Linear Mechanics, 2018, 107: 42-55 [7] HU B, DIAO X, ZONG L Q, et al. The onset mechanism of Parkinson’s beta oscillations: a theoretical analysis [J]. Journal of Theoretical Biology, 2019, 470: 1-16 [8] GRACE S R, GRAEF J R, JADLOVSKÁ I. Oscillation criteria for second-order half-linear delay differential equations with mixed neutral terms [J]. 0Mathematica Slovaca, 2019, 69(5): 1117-1126 [9] 宋福义,高建芳. 一类非线性延迟微分方程数值解的振动性分析[J]. 应用数学学报, 2016, 39(5): 762-773 SONG F Y, GAO J F. Oscillation analysis of numerical solutions for a kind of nonlinear delay differential equation [J]. Acta Mathematicae Applicatae Sinica, 2016, 39(5): 762-773 [10] GAO J F. Numerical oscillation and non-oscillation for differential equation with piecewise continuous arguments of mixed type [J]. Applied Mathematics and Computation, 2017, 299: 16-27 [11] SANTRA S S. Necessary and sufficient conditions for oscillation to second-order half-linear delay differential equations [J]. Journal of Fixed Point Theory and Applications, 2019, 21(3): 85 [12] WANG Q, WEN J C, ZHANG P. Oscillation analysis of advertising capital model: analytical and numerical studies [J]. Applied Mathematics and Computation, 2019, 354: 365-376 [13] GOMPERTZ B. On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies [J]. Philosophical Transactions of The Royal Society of London, 1825, 115: 513-585 [14] WINSOR C P. The Gompertz curve as a growth curve [J]. Proceedings of The National Academy of Sciences, 1932, 18(1): 1-8 [15] LAIRD A K, TYLER S A, BARTON A D. Dynamics of normal growth [J]. Growth, 1965, 29(3): 233-248 [16] PIOTROWSKA M J, FORYŚ U. The nature of Hopf bifurcation for the Gompertz model with delays [J]. Mathematical & Computer Modelling, 2011, 54(9-10): 2183-2198 [17] BODNAR M, PIOTROWSKA M J, FORYŚ U. Gompertz model with delays and treatment: mathematical analysis [J]. Mathematical Biosciences and Engineering (Online), 2013, 10(3): 551-563 [18] CABRALES L E B, MONTIJANO J I, SCHONBEK M, et al. A viscous modified gompertz model for the analysis of the kinetics of tumors under electrochemical therapy [J]. Mathematics and Computers in Simulation, 2018, 151: 96-110 [19] 宋继志,王媛媛. 延迟Gompertz模型的数值分支和混合控制[J]. 河北科技大学学报, 2019, 40(2): 112-118 SONG J Z, WANG Y Y. Numerical bifurcation and hybrid control of a Gompertz model with time delay [J]. Journal of Hebei University of Science and Technology, 2019, 40(2): 112-118 [20] LEDZEWICZ U, MUNDEN J, SCHÄTTLER H. Scheduling of angiogenic inhibitors for Gompertzian and logistic tumor growth models [J]. Discrete and Continuous Dynamical Systems-Series B (DCDS-B), 2012, 12(2): 415-438 [21] ENDERLING H, CHAPLAIN M A J. Mathematical modeling of tumor growth and treatment [J]. Current Pharmaceutical Design, 2014, 20(30): 4934-4940 [22] LEDZEWICZ U, MAURER H, SCHÄTTLER H. Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy [J]. Mathematical Biosciences and Engineering (Online), 2017, 8(2): 307-323 [23] GYÖRI I, LADAS G. Oscillation theory of delay differential equations[M]. Oxford: Clarendon Press, 1991. [24] SONG M H, YANG Z W, LIU M Z. Stability of θ-methods for advanced differential equations with piecewise continuous arguments [J]. Computers & Mathematics with Applications, 2005, 49(9-10): 1295-1301 |
[1] | 谭满春; . 非线性差分方程的振动性充分判则[J]. 广东工业大学学报, 2002, 19(1): 106-109. |
|