广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (04): 9-14.doi: 10.12052/gdutxb.200051

• • 上一篇    下一篇

车辆颜色和型号识别算法研究与应用

战荫伟, 朱百万, 杨卓   

  1. 广东工业大学 计算机学院,广东 广州 510006
  • 收稿日期:2020-04-01 出版日期:2020-07-11 发布日期:2020-07-11
  • 通信作者: 朱百万(1985-),男,硕士研究生,主要研究方向为图像处理和深度学习,E-mail:2428278928@qq.com E-mail:2428278928@qq.com
  • 作者简介:战荫伟(1966-),男,教授,博士,主要研究方向为图像处理、人机交互、虚拟现实、增强现实
  • 基金资助:
    广东省自然科学基金资助项目(2018A030313802)

Research and Application of Vehicle Color and Model Recognition Algorithm

Zhan Yin-wei, Zhu Bai-wan, Yang Zhuo   

  1. School of Computers, Guangdong University of Technology, Guangzhou, 510006, China
  • Received:2020-04-01 Online:2020-07-11 Published:2020-07-11

摘要: 针对目前基于机器学习的车辆颜色和型号识别方法的识别准确率低问题, 提出基于卷积神经网络的车辆颜色和型号识别方法。该方法使用Darknet网络中YOLOv3(You Only LookOnce Version 3)算法对车辆图片的车脸进行检测与定位, 再对车脸区域使用车辆颜色和型号识别算法同时识别车辆颜色和型号, 这是对车辆多属性同时识别的方法, 不同于车辆单一属性识别的方法。在公开车辆数据集(Peking University Vehicle Datasets, PKU-VD)上进行实验, 实验结果表明, 车辆颜色和型号同时识别准确率为93.75%, 车辆颜色单一属性识别准确率为94.98%, 车辆型号单一属性识别准确率98.38%, 明显优于基于机器学习的车辆属性识别算法, 从而验证该算法是可行且有效的。最后将车辆颜色和型号识别技术应用在智能停车场收费系统中。

关键词: 车辆颜色识别, 车型识别, 车脸, 卷积神经网络, 智能停车场收费系统

Abstract: In order to solve the problem of low recognition accuracy of current vehicle color and model recognition methods based on machine learning, a vehicle color and model recognition method based on convolutional neural network is proposed. The method uses YOLOv3(You Only LookOnce Version 3) algorithm in Darknet network to detect and locate the vehicle face, and then the vehicle color and model recognition algorithm based on convolutional neural network is used to identifythe vehicle color and model. This is a multi-attribute recognition method for vehicle, it is different from the recognition method of single vehicle attribute. On public traffic data collection of Peking University Vehicle Datasets experiment, the experimental results show that the vehicle color and model recognition accuracy of 93.75% at the same time, the recognition accuracy of vehicle color is 94.98%, the recognition accuracy of vehicle model attribute recognition is 98.38%, It is obviously better than the vehicle attribute recognition algorithm based on machine learning, the algorithm is proved to be feasible and effective. Finally, the vehicle color and model recognition technology is applied to the intelligent parking fee system.

Key words: vehicle color recognize, vehicle model recognize, vehicle face, convolutional neural networks(CNN), intelligent parking fee system

中图分类号: 

  • TP391
[1] 邓柳. 基于深度卷积神经网络的车型识别[D]. 成都: 西南交通大学, 2015.
[2] REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE Computer Society, 2018: 89-95.
[3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedi ng of the 3rd International Conference on Learning Representations. SanDiego: ICLR, 2015: 1409-1556.
[4] 陈旭, 张军, 陈文伟, 等. 卷积网络深度学习算法与实例[J]. 广东工业大学学报, 2017, 34(6): 20-26
CHEN X, ZHANG J, CHEN W W, et al. Convolutional neural network algorithm and case [J]. Journal of Guangdong University of Technology, 2017, 34(6): 20-26
[5] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//26th Annual Conference on Neural Information Processing Systems. Lake Tahoe: Neur al Information Processing System Foundation, 2012: 1097-1105.
[6] HEK, ZHANG X, REN S, et al. Deep residual learning for imagerecognition[C]//2016 IEEE Conference on Compute rVision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 770-778.
[7] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolueons[C]//2015 IEEE Conference on Computer Visi onand Pattern Recognition. Boston: IEEE Computer Society, 2015: 1-9.
[8] HowarD A G, ZHU M, CHEN B, et al. Mobile Nets: efficient convolutional neural networks for mobile vision applications [J]. arXiv preprint, 2017, 32(9): 100-108
[9] 尹宏鹏, 陈波, 柴毅, 等. 基于视觉的目标检测与跟踪综述[J]. 自动化学报, 2016, 42(10): 1466-1489
YIN H P, CHEN B, CHAI Y, et al. Vision-based object detection and tracking: a review [J]. Acta Automatica Sinica, 2016, 42(10): 1466-1489
[10] 李旭冬, 叶茂, 李涛. 基于卷积神经网络的目标检测研究综述[J]. 计算机应用研究, 2017, 34(10): 2881-2886
LI X D, YE M, LI T. Review of object detection based on convolutional neural networks [J]. Application of Computer Research, 2017, 34(10): 2881-2886
[11] LAOPRACHA N, SUNAT K. Comparative study of computational time that HOG-Based features used forvehicle detection[C]//2017 International Conference on Computing and Information Technology. Helsinki: IEEE Computer Society, 2017: 275-284.
[12] El-KHOREBY MOHAMED, ABU-BAKAR SYED. Vehicle detection and counting for complex weather conditions[C]//2017 IEEE International Conference on Signal and Image Processing Applications. Beijing: IEEE Computer Society, 2017: 425-428.
[13] MAQBOOL S, KHAN M, TAHIR J, et al. Vehicle Detection, Tracking and Counting[C]// 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP). Shenzhen: IEEE, 2018: 126-132.
[14] 张红兵, 李海林, 黄晓婷, 等. 基于车前脸HOG特征的车型识别方法研究与实现[J]. 计算机仿真, 2015, 32(12): 119-123
ZHANG H B, LI H L, HUANG X T, et al. Research and implementation of vehicle-type recognition method based on HOG features of vehicle frontal face [J]. Computer Simulation, 2015, 32(12): 119-123
[15] PAN C, SUN M, YANZ. The study on vehicle detection based on DPM in traffic scenes[C]//2016 International Conference on Frontier Computing. Tokyo: FC, 2016: 19-27.
[16] SANG J, GUO P, XIANGZ, et al. Vehicle detection based on faster-RCNN [J]. Journal of Chongqing University, 2017, 40(7): 32-36
[17] 张鹏, 陈湘军, 阮雅端, 等. 采用稀疏SIFT特征的车型识别方法[J]. 西安交通大学学报, 2015, 49(12): 137-143
ZHANG P, CHEN X J, RUAN Y D, et al. A vehicle classification technique based on sparse coding [J]. Journal of Xi'an Jiaotong University, 2015, 49(12): 137-143
[18] 贾晓. 套牌车辆的车型识别与检索技术研究[D]. 大连: 大连海事大学, 2016.
[19] TANG Y, ZHANG C Z, GU R S, et al. Vehicle detection and recognition for intelligent traffic surveillance system [J]. Multimedia Tools & Applications, 2017, 76(4): 5817-5832
[20] 李慧, 利齐律, 程良伦, 等. 基于多颜色空间卷积神经网络的车辆颜色分类[J]. 工业控制计算机, 2019, 32(11): 78-82
LI H, LI Q L, CHENG L L, et al. Convolutional neural network based on multi-color space for vehicle color classification [J]. Industrial Control Computer, 2019, 32(11): 78-82
[21] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 779-788.
[22] 陈正斌, 叶东毅, 朱彩霞, 等. 基于改进YOLOv3的目标识别方法[J]. 计算机系统应用, 2020, 29(1): 49-58
CHEN Z B, YE D Y, ZHU C X, et al. Object recognition method based on improved YOLOv3 [J]. Computer Systems and Applications, 2020, 29(1): 49-58
[23] YAN K, TIAN Y, WANG Y, et al. Exploiting multi-grain ranking constraints for precisely searching visually-similar vehicles[C]//2017 IEEE Conference on Computer Vision. Venice: IEEE, 2017: 562-570.
[24] PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library[C]//33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Vancouver: Curran Associates, 2019: 8024-8035.
[1] 谢国波, 林立, 林志毅, 贺笛轩, 文刚. 基于YOLOv4-MP的绝缘子爆裂缺陷检测方法[J]. 广东工业大学学报, 2023, 40(02): 15-21.
[2] 章云, 王晓东. 基于受限样本的深度学习综述与思考[J]. 广东工业大学学报, 2022, 39(05): 1-8.
[3] 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(04): 52-58.
[4] 马少鹏, 梁路, 滕少华. 一种轻量级的高光谱遥感图像分类方法[J]. 广东工业大学学报, 2021, 38(03): 29-35.
[5] 夏皓, 蔡念, 王平, 王晗. 基于多分辨率学习卷积神经网络的磁共振图像超分辨率重建[J]. 广东工业大学学报, 2020, 37(06): 26-31.
[6] 曾碧卿, 韩旭丽, 王盛玉, 徐如阳, 周武. 基于双注意力卷积神经网络模型的情感分析研究[J]. 广东工业大学学报, 2019, 36(04): 10-17.
[7] 杨孟军, 苏成悦, 陈静, 张洁鑫. 基于卷积神经网络的视觉闭环检测研究[J]. 广东工业大学学报, 2018, 35(05): 31-37.
[8] 陈旭, 张军, 陈文伟, 李硕豪. 卷积网络深度学习算法与实例[J]. 广东工业大学学报, 2017, 34(06): 20-26.
[9] 申小敏, 李保俊, 孙旭, 徐维超. 基于卷积神经网络的大规模人脸聚类[J]. 广东工业大学学报, 2016, 33(06): 77-84.
[10] 刘立程;. 改进的基于形态学梯度法的车辆图像边缘检测方法[J]. 广东工业大学学报, 2007, 24(2): 84-86.
[11] 刘立程; . 图像聚类分析法用于汽车图像边缘的检测[J]. 广东工业大学学报, 2006, 23(2): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!