广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (06): 91-97.doi: 10.12052/gdutxb.210103

• 可拓学与创新方法 • 上一篇    下一篇

科学效应与可拓变换、传导效应的关系研究

葛标标1,2, 杨春燕1,2   

  1. 1. 广东工业大学 可拓学与创新方法研究所,广东 广州 510006;
    2. 广东工业大学 机电工程学院,广东 广州 510006
  • 收稿日期:2021-07-12 出版日期:2021-11-10 发布日期:2021-11-09
  • 通信作者: 杨春燕(1964–),女,教授,主要研究方向为可拓学、创新设计与智能设计、知识工程与智能系统等,E-mail:276519106@qq.com E-mail:276519106@qq.com
  • 作者简介:葛标标(1998–),男,硕士研究生,主要研究方向为可拓设计、创新设计与智能设计等
  • 基金资助:
    国家自然科学基金资助项目(72071049)

A Research on the Relationship between Scientific Effect, Extension Transformation and Conductive Effect

Ge Biao-biao1,2, Yang Chun-yan1,2   

  1. 1. Institute of Extenics and Innovation Methods, Guangdong University of Technology, Guangzhou 510006, China;
    2. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-07-12 Online:2021-11-10 Published:2021-11-09

摘要: 为了降低发明问题的解决理论(Theory of the Solution of Inventive Problems, 缩写为TRIZ)中科学效应使用过程的模糊性, 并准确而清晰地表述效应中输入与输出的转换关系, 提出了基于可拓学的形式化表达方式研究科学效应的方法。首先简单介绍可拓变换、传导效应与科学效应的概念, 然后分别针对7种重要的物理效应与可拓变换、传导效应的关系开展形式化定量化研究: 建立物理效应中涉及到物的各种物元模型; 根据领域知识和可拓学中的相关规则, 建立物元间的相关关系; 再根据主动变换与传导变换的知识, 对相关关系中的物元实施主动变换, 并获取相应的传导变换; 然后根据领域知识中物理效应的计算公式和传导效应的计算公式, 获得物理效应与传导效应的换算公式; 最后总结归纳出建立物理效应与可拓变换和传导效应的一般关系的方法。该研究用形式化方法准确而详细地描述各种物理效应的主要内容, 以便人们理解各物理效应产生的机理以及输入与输出量的转换关系, 也为结合物理效应与可拓变换解决工程技术领域的矛盾问题提供依据和方法, 同时, 为发现新的科学效应提供了一种新思路。

关键词: 可拓学, 相关规则, 可拓变换, 传导效应, 科学效应, 物理效应

Abstract: In order to reduce the fuzziness of using scientific effect in TRIZ, and to accurately and clearly describe the transformation between input and output in the effect, a formal expression method based on Extenics is proposed to study scientific effect. First, the concepts of extension transformation, conductive effect and scientific effect are briefly introduced, and then a formal quantitative research on the relationship between seven important physical effect and extension transformation and conductive effect is carried out, establishing the various objects involved in physical effect Matter-element model, and establishing the correlation between matter-element according to the domain knowledge and correlation rules in Extenics. An active transformation of matter-element in the correlation relationship is implemented based on the knowledge of active transformation and conductive transformation, obtaining the corresponding conductive transformation. Then according to the calculation formula of physical effect and conductive effect in the domain knowledge, the conversion formula of physical effect and conductive effect is obtained. Finally, methods are summarized to establish the general relationship between physical effects and extension transformation and conductive effect. This study describes the main contents of various physical effects accurately and in detail by formal methods, so that the mechanism of various physical effects and the conversion relationship between input and output can be understood. A basis and methods are also provided for solving the contradictions in the field of engineering technology combined with physical effects and extension transformation, and a new idea is provided for finding new scientific effects.

Key words: Extenics, correlation rule, extension transformation, conductive effect, scientific effect, physical effect

中图分类号: 

  • TH122
[1] 杨春燕. 可拓创新方法[M]. 北京: 科学出版社, 2017: 70-102.
[2] 杨春燕, 蔡文. 可拓学[M]. 北京: 科学出版社, 2014: 58-75.
[3] 汤龙, 杨春燕. 复杂基元相关网下的传导变换[J]. 智能系统学报, 2016, 11(1): 104-110.
TANG L, YANG C Y. Conductive transformation under complicated basic-element correlative network [J]. CAAI Transactions on Intelligent Systems, 2016, 11(1): 104-110.
[4] 王丰, 顾佼佼, 林瑜. 积累N次主动变换的传导知识挖掘[J]. 智能系统学报, 2019, 14(5): 1035-1039.
WANG F, GU J J, LIN Y. Mining conducted knowledge by accumulating N active transformations [J]. CAAI Transactions on Intelligent Systems, 2019, 14(5): 1035-1039.
[5] 王丰, 顾佼佼, 孙江, 等. 传导过程元与过程元可拓集及其工程应用[J]. 广东工业大学学报, 2018, 35(5): 1-4.
WANG F, GU J J, SUN J, et al. Transmission process element and process element extension set and its engineering application [J]. Journal of Guangdong University of Technology, 2018, 35(5): 1-4.
[6] 成思源, 周金平, 郭钟宁. 技术创新方法——TRIZ理论及其应用[M]. 北京: 清华大学出版社, 2014: 200-203.
[7] 王立新, 乔晓东, 刘晟杰, 等. TRIZ中科学效应库的研究综述[J]. 现代制造工程, 2021(5): 154-160.
WANG L X, QIAO X D, LIU S J, et al. A summary of research on the scientific effect database in TRIZ [J]. Modern Manufacturing Engineering, 2021(5): 154-160.
[8] YAN W, ZANNI-MERK C, CAVALLUCCI D, et al. An ontology-based approach for using physical effects in inventive design [J]. Engineering Applications of Artificial Intelligence, 2014, 32: 21-36.
[9] NEGNY S, BELAUD J P, ROBLES G C, et al. Toward an eco-innovative method based on a better use of resources: application to chemical process preliminary design [J]. Journal of Cleaner Production, 2012, 32: 101-113.
[10] BENMOUSSA R, GUIO R D, DUBOIS S, et al. New opportunities for innovation breakthroughs for developing countries and emerging economies [M]. Cham: Springer, 2019: 70-78.
[11] 刘尚, 史冬岩, 米粮川, 等. 输入输出流效应推理的可拓学方法[J]. 机械设计, 2017, 34(5): 86-93.
LIU S, SHI D Y, MI L C, et al. Extentics method of effect reasoning restrained by input output flow [J]. Journal of Machine Design, 2017, 34(5): 86-93.
[12] 白仲航, 张敏. TRIZ第2类标准解的可拓变换表示及应用研究[J]. 机械设计, 2019, 36(5): 122-127.
BAI Z H, ZHANG M. Extension transformation expression and application research of TRIZ’s second standard solutions [J]. Journal of Machine Design, 2019, 36(5): 122-127.
[13] 周贤永, 陈光. TRIZ40条发明原理的可拓变换表述形式研究[J]. 科技进步与对策, 2011, 28(5): 107-115.
ZHOU X Y, CHEN G. Research on the extension transformation form of TRIZ 40 invention principles [J]. Science & Technology Progress and Policy, 2011, 28(5): 107-115.
[14] REN S D, GUI F Z, ZHAO Y W, et al. Accelerating preliminary low-carbon design for products by integrating TRIZ and Extenics methods [J]. Advances in Mechanical Engineering, 2017, 9(9): 1-18.
[15] 江帆, 陈玉梁, 陈江栋, 等. 基于TRIZ与可拓学的盘类铸件打磨方案设计[J]. 广东工业大学学报, 2019, 36(2): 20-25.
JIANG F, CHEN Y L, CHEN J D, et al. Design of a grinding equipment based on TRIZ and Extenics [J]. Journal of Guangdong University of Technology, 2019, 36(2): 20-25.
[16] 赵敏, 张武城, 王冠殊. TRIZ进阶实战——大道至简的发明方法[M]. 北京: 机械工业出版社, 2015: 207-228.
[17] 苗恩铭, 费业泰. 传统测量的热膨胀系数局限性论证[J]. 合肥工业大学学报(自然科学版), 2002(5): 641-644.
MIAO E M, FEI Y T. On the limitation of traditional coefficient of thermal expansion [J]. Journal of Hefei University of Technology (Natural Science), 2002(5): 641-644.
[18] KHADKIKAR P. The principles and properties of thermostat metals [J]. JOM, 1993, 45(6): 39-42.
[19] 蔡平海. 热双金属综述[J]. 上海钢研, 1991(5): 1-19.
[20] 魏源, 李锋. 材料力学[M]. 北京: 机械工业出版社, 2019.
[21] LAUMANN D, HAYES P, ENZINGMÜLLER C, et al. Magnetostriction measurements with a low-cost magnetostrictive cantilever beam [J]. American Journal of Physics, 2020, 88(6): 448-455.
[22] 冯红亮, 杨志红, 扈晓斌. 磁致伸缩效应原理及在工业测量中的应用[J]. 仪表技术与传感器, 2009(S1): 344-346.
FENG H L, YANG Z H, HU X B. Principle of magnetostrictive effect and application in industry measurement [J]. Instrument Technique and Sensor, 2009(S1): 344-346.
[23] 韩述斌. 固体物理效应与现代传感器技术[J]. 压电与声光, 1997(4): 20-23.
HAN S B. Solid state physic effects and modern transducer technology [J]. Piezoelectrics & Acoustooptics, 1997(4): 20-23.
[24] 叶正芳, 徐正堂. 压电陶瓷压电应变常数d33的测试方的研究[J]. 压电与声光, 1993(4): 37-43.
YE Z F, XU Z T. Investigation of methods for measuring the constant d33 of piezoelectric ceramics [J]. Piezoelectrics & Acoustooptics, 1993(4): 37-43.
[25] 陈玉精, 顾进锋, 闵德. 水汽化潜热测定装置[J]. 上海计量测试, 2015, 42(5): 18-20.
CHEN Y J, GU J F, MIN D. A testing device for latent heat of water vaporization [J]. Shanghai Measurement and Testing, 2015, 42(5): 18-20.
[26] 林廷艺. 浅谈形状记忆合金的应用及发展[J]. 世界有色金属, 2019(11): 165.
LIN T Y. Application and development of shape memory alloys [J]. World Nonferrous Metals, 2019(11): 165.
[1] 高红, 郭媛媛, 刘行. 基于分合链方法的图的意大利支配数研究[J]. 广东工业大学学报, 2023, 40(02): 1-4.
[2] 陈锦成, 成思源, 杨雪荣. 基于功能需求与可拓理论的专利群规避设计[J]. 广东工业大学学报, 2023, 40(02): 5-14,29.
[3] 王金广, 汤敏聪, 杨振昊, 王昊. 化妆瓶塑料回收处理系统的可拓设计创意生成研究[J]. 广东工业大学学报, 2022, 39(06): 130-140.
[4] 吴嘉健, 杨春燕. TRIZ中流分析的可拓流模型建立方法研究[J]. 广东工业大学学报, 2022, 39(02): 12-18.
[5] 陈美蓉, 江帆, 黄浩翔, 黄海涛, 黄玉琴. 物场-可拓创新方法研究及应用[J]. 广东工业大学学报, 2022, 39(02): 19-25,90.
[6] 王涛, 李文杰. 基于可拓理论的传统民居建筑改造创新设计研究—以北京市房山区宝水村为例[J]. 广东工业大学学报, 2022, 39(02): 26-31.
[7] 陈锦成, 成思源, 杨雪荣. 基于功能分析与可拓理论的再设计方法[J]. 广东工业大学学报, 2022, 39(02): 32-38.
[8] 付晓莉, 仝小冬, 尚会超, 丁同锐, 崔汝晨. 情感化造型基元的拟合模型[J]. 广东工业大学学报, 2022, 39(02): 48-54.
[9] 张紫然, 李兴森, 郭恒发, 王昊. 解决设计问题的可拓创意生成方法——以区庄地铁站地面烟蒂问题为例[J]. 广东工业大学学报, 2021, 38(06): 103-110.
[10] 汪培庄, 曾繁慧, 孙慧, 李兴森, 郭建威, 孟祥福, 何静. 知识图谱的拓展及其智能拓展库[J]. 广东工业大学学报, 2021, 38(04): 9-16.
[11] 李千静, 成思源, 陈晓菁, 杨雪荣, 陈斌. 基于可拓学与CAI技术的无尘黑板专利规避设计[J]. 广东工业大学学报, 2021, 38(02): 20-25,47.
[12] 郭恒发, 李兴森, 刘仁湖. 融合可拓学与TRIZ的产品设计创意生成方法——以手机充电器产品设计为例[J]. 广东工业大学学报, 2020, 37(05): 7-12.
[13] 李仔浩, 杨春燕, 李文军. 可拓创新方法在发电机创新设计中的应用[J]. 广东工业大学学报, 2020, 37(01): 1-6.
[14] 郑震霆, 杨春燕. 基于事元理论的机械运动系统行为知识表示研究[J]. 广东工业大学学报, 2019, 36(06): 1-8,23.
[15] 江帆, 卢浩然, 陈玉梁, 祁肖龙. 基于TRIZ与可拓学的可变面积方桌设计[J]. 广东工业大学学报, 2019, 36(04): 108-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!