广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (02): 84-90.doi: 10.12052/gdutxb.210041
彭美春1, 叶伟斌1, 邹康聪1, 李君平1, 黄文伟2
Peng Mei-chun1, Ye Wei-bin1, Zou Kang-cong1, Li Jun-ping1, Huang Wen-wei2
摘要: 研究简易工况加载减速法判别选择性催化还原系统(Selective Catalyst Reduction, SCR)、废气再循环(Exhaust Gas Recirculation, EGR)、颗粒捕集器(Diesel Particulate Filter, DPF)、氧化催化器(Diesel Oxidation Catalyst, DOC)净化柴油车的氮氧化物(NOx)与烟度排放的效果。对116辆次匹配上述净化技术的国V、国VI重型柴油货车进行加载减速排放检测,比较NOx、烟度排放值,评价净化技术的净化效果,分析最大的轮边功率对应的转鼓线速度点(100% Actual Velocity of Maximum Wheel Power, 100%VelHPMax)、最大的轮边功率对应的转鼓线速度80%点(80%VelHPMax)两种测试工况下排放的差异。发现EGR与SCR集成技术对NOx的净化效果明显优于单一SCR或EGR技术,SCR技术优于EGR技术。配置EGR与SCR集成技术、单SCR技术车辆在100%VelHPMax 工况下NOx体积分数高于80%VelHPMax工况,单EGR技术则相反。配置DOC与DPF集成技术的柴油车辆烟度排放显著低于单DOC技术的车辆。测试的柴油车辆排气烟度光吸收系数,100%VelHPMax工况下均高于80%VelHPMax工况。结果表明,加载减速法能有效分辨净化技术对柴油车排放净化效果的差异。
中图分类号:
[1] 生态环境部. 中国机动车环境管理年报(2020年)[R]. 北京: 中华人民共和国生态环境部, 2020. [2] 单文坡, 余运波, 张燕, 等. 中国重型柴油车排气净化技术研究进展[J]. 环境科学研究, 2019, 32(10): 1672-1677. SHAN W P, YU Y B, ZHANG Y, et al. Research progress in exhaust purification technology of heavy diesel vehicles in China [J]. Research of Environmental Sciences, 2019, 32(10): 1672-1677. [3] GUAN B, ZHAN R, LIN H, et al. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines [J]. Environ Manage, 2015, 154: 225-58. [4] DHAL D, MOHAN P. Simultaneous abatement of diesel soot and NO x emissions by effective catalysts at low temperature: an overview [J]. Catalysis Reviews, 2018, 60(3): 437-496. [5] 王谦, 周明星, 涂方印. 车用柴油机Urea-SCR系统降低NO x的试验研究[J]. 拖拉机与农用运输车, 2011, 38(5): 36-39,42. WANG Q, ZHOU M X, TU F Y. Test study of reducing vehicular diesel engine NOx emission with Urea-SCR system [J]. Tractor & Farm Transporter, 2011, 38(5): 36-39,42. [6] 张盼望, 熊锐, 吴坚, 等. 低压EGR系统对缸内直喷发动机性能影响的研究[J]. 广东工业大学学报, 2020, 37(5): 82-86. ZHANG P W, XIONG R, WU J, et al. A Study of the effect of low pressure EGR system on gasoline direct injection engine performance [J]. Journal of Guangdong University of Technology, 2020, 37(5): 82-86. [7] 葛蕴珊, 赵伟, 王军方, 等. DOC对柴油机排放特性影响的研究[J]. 北京理工大学学报, 2012, 32(5): 460-464. GE Y S, ZHAO W, WANG J F, et al. Effects of diesel oxidation catalyst on emission from diesel [J]. Transactions of Beijing Institute of Technology, 2012, 32(5): 460-464. [8] 焦鹏昊, 李强, 张文, 等. 机动车DOC-DPF系统排放特性试验研究[J]. 天津职业院校联合学报, 2017, 19(8): 68-72. JIAO P H, LI Q, ZHANG W, et al. Research on emission characteristic test of motor vehicle DOC-DPF system [J]. Journal of Tianjin Vocational Institutes, 2017, 19(8): 68-72. [9] 中华人民共和国生态环境部. GB17691-2018重型柴油车污染物排放限值及测量方法(中国第六阶段)[S]. 北京: 中国环境出版社, 2018. [10] 彭美春, 张伟伦, 黎育雷, 等. 配置SCR的柴油货车道路运行NO x排放分析[J]. 安全与环境学报, 2019, 19(1): 320-325. PENG M C, ZHANG W L, LI Y L, et al. Analysis of NOx emissions from road operation of diesel trucks equipped with SCR [J]. Journal of Safety and Environment, 2019, 19(1): 320-325. [11] 禹文林, 叶文龙, 龙会游, 等. 轻型汽油车实际行驶污染物排放的影响因素[J]. 汽车安全与节能学报, 2020, 11(1): 135-142. YU W L, YE W L, LONG H Y, et al. Influential factors of the real driving emission for light-duty gasoline vehicles [J]. J Automotive Safety and Energy, 2020, 11(1): 135-142. [12] 中华人民共和国生态环境部. GB3847-2018柴油车污染物排放限值及测量方法(自由加速法及加载减速法)[S]. 北京: 中国环境出版社, 2018. [13] 王军方, 尹航, 丁焰, 等. 在用柴油车NO x排放的测量方法[J]. 环境工程技术学报, 2015, 5(5): 407-410. WANG J F, YIN H, DING Y, et al. Research of NOx emission test method for in-use diesel vehicles [J]. Journal of Environmental Engineering Technology, 2015, 5(5): 407-410. [14] 徐驰, 刘娟, 居力, 等. 非分散红外法应用于在用柴油车NO x排放检测的研究[J]. 中国环境监测, 2019, 35(3): 28-33. XU C, LIU J, JU L, et al. Research of NDIR applied on measuring NOx emission from in-use diesel vehicles [J]. Environmental Monitoring in China, 2019, 35(3): 28-33. [15] 郭红松, 关敏, 景晓军, 等. 尿素-SCR技术对NO x转化率和NH3排放的影响[J]. 车用发动机, 2011(3): 55-59,64. GUO H S, GUAN M, JING X J, et al. The influence of Urea-SCR technology on NOx conversion rate and NH3 emission [J]. Vehicle Engine, 2011(3): 55-59,64. |
[1] | 萧剑鸣, 赵向云, 杨晓波, 余林, 范群. 一种智能控制的整体式SCR催化剂非破坏性测试装置的研制及应用[J]. 广东工业大学学报, 2017, 34(04): 31-35. |
|