广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (03): 41-48.doi: 10.12052/gdutxb.210067
冯广1, 潘庭锋2, 伍文燕3
Feng Guang1, Pan Ting-feng2, Wu Wen-yan3
摘要: 线上线下结合的教学模式是未来教学的一个趋势,每一个学生的学习行为会直接影响学习结果,因此研究学习者学习行为对学习成绩的影响程度是目前的研究重点。目前常见的评价模型存在可信程度较低、可解释性较弱等问题,本文使用基于证据推理的贝叶斯网络(Bayes Network, BN)能够有效地解决这一问题。把方法应用在学习行为分析上,与常用的机器模型和深度学习模型进行比较,表现出更低的误差和更强的可解释性。
中图分类号:
[1] JOHNSON M L, SINATRA G M. Use of task-value instructional inductions for facilitating engagement and conceptual change [J]. Contemporary Educational Psychology, 2013, 38(1): 51-63. [2] 李爽, 王增贤, 喻忱, 等. 在线学习行为投入分析框架与测量指标研究——基于LMS数据的学习分析[J]. 开放教育研究, 2016, 22(2): 77-88. LI S, WANG Z X, YU C, et al. Research on analysis framework and measurement index of online learning behavior engagement learning analysis based on LMS data [J]. Open Education Research, 2016, 22(2): 77-88. [3] PERAL J, MATE A, MARCO M. Application of data mining techniques to identify relevant key performance indicators [J]. Computer Standards & Interfaces, 2017, 50: 55-64. [4] APARICIO M, OLIVEIRA T, BACAO F, et al. Gamification: a key determinant of massive open online course (MOOC) success [J]. Information & Management, 2019, 56(1): 39-54. [5] MORRIS L V, FINNEGAN C, WU S S. Tracking student behavior, persistence, and achievement in online courses [J]. The Internet and Higher Education, 2005, 8(3): 221-231. [6] 马飞, 李娟. 基于聚类算法的MOOCs学习者分类及学习行为模式研究[J]. 广东工业大学学报, 2018, 35(3): 18-23. MA F, LI J. A Research on the classification of learners and patterns of learning behavior based on cluster algorithms under MOOCs’ environment [J]. Journal of Guangdong University of Technology, 2018, 35(3): 18-23. [7] 牟智佳. MOOCs环境下学习行为群体特征分析与学习结果预测研究[J]. 中国医学教育技术, 2020, 34(1): 1-6. MOU Z J. Analysis of group characteristics of learning behavior and prediction of learning outcomes in MOOCs environment [J]. China Medical Education Technology, 2020, 34(1): 1-6. [8] 沈欣忆, 刘美辰, 吴健伟, 等. MOOC学习者在线学习行为和学习绩效评估模型研究[J]. 中国远程教育, 2020, 40(10): 1-8. SHEN X Y, LIU M C, WU J W, et al. Towards a model for evaluating students' online learning behaviors and learning performance [J]. Distance Education in China, 2020, 40(10): 1-8. [9] WU Q. MOOC Learning behavior analysis and teaching intelligent decision support method based on improved decision tree C4.5 algorithm [J]. International Journal of Emerging Technologies in Learning (iJET), 2019, 14(12): 29-41. [10] 陈德鑫, 占袁圆, 杨兵. 深度学习技术在教育大数据挖掘领域的应用分析[J]. 电化教育研究, 2019, 40(2): 68-76. CHEN D X, ZHAN Y Y, YANG B. Analysis of applications of deep learning in educational big data mining [J]. e-Education Research, 2019, 40(2): 68-76. [11] 孙霞, 吴楠楠, 张蕾, 等. 基于深度学习的MOOCs辍学率预测方法[J]. 计算机工程与科学, 2019, 41(5): 893-899. SUN X, WU N N, ZHANG L, et al. A MOOC dropout rate prediction method based on deep learning [J]. Computer Engineering & Science, 2019, 41(5): 893-899. [12] 胡航, 杜爽, 梁佳柔, 等. 学习绩效预测模型构建: 源于学习行为大数据分析[J]. 中国远程教育, 2021, 41(4): 8-20. HU H, DU S, LIANG J R, et al. Towards a prediction model of learning performance: informed by learning behavior big data analytics [J]. Distance Education in China, 2021, 41(4): 8-20. [13] 杨婷, 滕少华. 改进的贝叶斯分类方法在电信客户流失中的研究与应用[J]. 广东工业大学学报, 2015, 32(3): 67-72. YANG T, TENG S H. Research and application of improved Bayes algorithm for the telecommunication customer churn [J]. Journal of Guangdong University of Technology, 2015, 32(3): 67-72. [14] 蔡瑞初, 甄启祺, 陈薇, 等. 基于贝叶斯网络的基因变异间的因果关系发现与验证[J]. 计算机应用与软件, 2020, 37(7): 22-28. CAI R C, ZHEN Q Q, CHEN W, et al. Discovery and validation of causalities among gene mutations based on Bayesian network [J]. Computer Applications and Software, 2020, 37(7): 22-28. [15] MOE S J, CARRIGER J F, GLENDELL M. Increased use of Bayesian network models has improved environmental risk assessments [J]. Integrated Environmental Assessment and Management, 2020, 17(1): 53-61. [16] 方媛, 刘俊槐, 谢晶珠, 等. 基于贝叶斯网络的公众参与PPP项目决策研究[J]. 广东工业大学学报, 2018, 35(3): 79-86. FANG Y, LIU J H, XIE J Z, et al. Public participation in decision-making of ppp project based on Bayesian network [J]. Journal of Guangdong University of Technology, 2018, 35(3): 79-86. [17] 赵磊, 邓彤, 吴卓平. 基于数据挖掘的MOOC学习者学业成绩预测与群体特征分析[J/OL]. 重庆高教研究, 2021 (2021-01-08)[2021-03-31]. http://kns.cnki.net/kcms/detail/50.1028.G4.20210106.1806.002.html. [18] 张连文, 郭海鹏. 贝叶斯网引论[M]. 北京: 科学出版社, 2006: 175-178. |
[1] | 马飞, 李娟. 基于聚类算法的MOOCs学习者分类及学习行为模式研究[J]. 广东工业大学学报, 2018, 35(03): 18-23. |
[2] | 方媛, 刘俊槐, 谢晶珠, 卢晓晴, 曾妍倩, 谢汉雄. 基于贝叶斯网络的公众参与PPP项目决策研究[J]. 广东工业大学学报, 2018, 35(03): 79-86. |
|