广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (04): 24-31.doi: 10.12052/gdutxb.210062
张欣, 王振友
Zhang Xin, Wang Zhen-you
摘要: 针对TransD模型参数多和实体两种表示间没有关联的问题,提出一种改进的知识表示模型PTransD。通过减少实体投影数,并对实体进行聚类来减少参数量,同时利用K-L(Kullback-Leibler)散度限制实体投影和对应实体类,使其概率分布相同。在模型训练时,对三元组损失和K-L损失交替优化,从类间距大的实体类中替换实体,提高负例质量。最后,在知识图谱数据集上进行三元组分类和链接预测实验。结果表明,该模型的性能在各项指标上均有明显提高,可以应用于知识图谱的完善和推理等。
中图分类号:
[1] LENAT D B, PRAKASH M, SHEPHERD M. CYC: using common sense knowledge to overcome brittleness and knowledge acquisition bottlenecks [J]. AI Magazine, 1985, 6(4): 65. [2] MILLER G A. WordNet [J]. Communications of the ACM, 1995, 38(11): 39-41. [3] BOLLACKER K, COOK R, TUFTS P. Freebase: ashared database of structured general human knowledge[C]//Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence. Vancouver: AAAI Press, 2007: 1962-1963. [4] JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition and applications [EB/OL]. (2021-04-01)[2021-04-20]. https://arxiv.org/abs/2002.00388. [5] GAO Y, LI Y, LIN Y, et al. Deep learning on knowledge graph for recommender system: a survey[EB/OL]. (2020-03-25) [2021-04-20]. https://arxiv.org/abs/2004.00387. [6] HUANG X, ZHANG J, LI D, et al. Knowledge graph embedding based question answering [C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. New York: ACM, 2019: 105-113. [7] DAI Y, WANG S, XIONG N N, et al. A survey on knowledge graph embedding: approaches, applications and benchmarks [J]. Electronics, 2020, 9(5): 750. [8] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality [J]. Advances in Neural Information Processing Systems, 2013, 26: 3111-3119. [9] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe: NIPS, 2013: 2787-2795. [10] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Austin: AAAI Press, 2015: 2181-2187. [11] JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C] //Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing: ACL, 2015: 687-696. [12] WANG H, ZHANG F, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommendation[C]//Proceedings of the 2019 World Wide Web Conference. San Francisco: ACM, 2019: 2000-2010. [13] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C] //In Proceedings of the Twenty-eighth AAAI Conference on Artificial Intelligence. Québec City: AAAI Press, 2014: 1112–1119. [14] DO K, TRAN T, VENKATESH S. Knowledge graph embedding with multiple relation projections[C]// 2018 24th International Conference on Pattern Recognition. Beijing: IEEE, 2018: 332-337. [15] ZHU Q, ZHOU X, TAN J, et al. Learning knowledge graph embeddings via generalized hyperplanes[C] //Proceedings of the 18th International Conference on Computational Science. Wuxi: Springer, 2018: 624-638. [16] ZEILER M D. Adadelta: an adaptive learning rate method[EB/OL]. (2012-12-22) [2021-04-20]. https://arxiv.org/abs/1212.5701v1. [17] BORDES A, GLOROT X, WESTON J, et al. Joint learning of words and meaning representations for open-text semantic parsing[C]// Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics. La Palma: PMLR, 2012: 127-135. [18] BORDES A, WESTON J, COLLOBERT R, et al. Learning structured embeddings of knowledge bases[C]//In Proceedings of the Twenty-eighth AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press, 2011: 301–306. [19] BORDES A, GLOROT X, WESTON J, et al. A semantic matching energy function for learning with multi-relational data [J]. Machine Learning, 2014, 94(2): 233-259. |
[1] | 苏攀予, 黄健文. 基于知识图谱的BIM技术在工程造价领域的应用研究[J]. 广东工业大学学报, 2023, 40(02): 103-110,119. |
[2] | 汪培庄, 曾繁慧, 孙慧, 李兴森, 郭建威, 孟祥福, 何静. 知识图谱的拓展及其智能拓展库[J]. 广东工业大学学报, 2021, 38(04): 9-16. |
[3] | 林琳, 李小涛, 徐永利. 国内TRIZ理论及方法的研究热点及发展趋势[J]. 广东工业大学学报, 2021, 38(02): 10-19. |
[4] | 朱灿, 林豪慧, 向林芳. 新能源汽车领域研究进展及前沿动态:基于Citespace Ⅲ知识图谱分析[J]. 广东工业大学学报, 2020, 37(02): 45-52. |
[5] | 谢卫红, 李杰, 董策. 国内制造业转型升级研究热点与趋势——基于Citespace的知识图谱分析[J]. 广东工业大学学报, 2018, 35(06): 9-17. |
[6] | 刘贻新, 张光宇, 杨诗炜, 张玉磊. 国内战略生态位管理(SNM)研究的知识图谱:基于CiteSpaceⅢ的计量分析[J]. 广东工业大学学报, 2017, 34(03): 59-66. |
[7] | 孙莹, 冯冈平, 练思婷. 文献计量下品牌传播发展趋势分析及研究[J]. 广东工业大学学报, 2017, 34(02): 97-102. |
|