广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (05): 38-45.doi: 10.12052/gdutxb.220072
马山, 汤超宇, 马骏峰, 彭涛
Ma Shan, Tang Chao-yu, Ma Jun-feng, Peng Tao
摘要: 作为高铁系统研究的重点问题之一,列车运行控制在降低列车运行能耗以及提升铁路运营效率等方面具有重要的意义。针对单列车在多个站点间的运行控制问题,提出一种基于对称交替方向乘子法的单列车最优运行控制方案。以旅客乘坐舒适度、列车运行能耗以及列车准点到站作为优化目标,将列车运行动力学方程、站点发车时间、列车运行速度和列车牵引力限制等作为约束条件,构建了列车最优运行控制模型。在对称交替方向乘子法的框架下,将原最优控制问题转化成为2个独立的子问题,并引入交替求解的机制,获得原问题的最优解。数值仿真表明对称交替方向乘子法相比交替方向乘子法能够在较少迭代步数内求解获得列车的最优控制序列,验证了算法的有效性。
中图分类号:
[1] 宁滨, 董海荣, 郑伟, 等. 高速铁路运行控制与动态调度一体化的现状与展望[J]. 自动化学报, 2019, 45(12): 2208-2217. NING B, DONG H R, ZHENG W, et al. Integration of train control and inline rescheduling for high-speed railways: challenges and future [J]. Acta Automatica Sinica, 2019, 45(12): 2208-2217. [2] SONG Q, SONG Y, TANG T, et al. Computationally inexpensive tracking control of high-speed trains with traction/braking saturation [J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1116-1125. [3] AMIE R, ALBRECHT, HOWLETT P G, et al. Energy-efficient train control: from local convexity to global optimization and uniqueness [J]. Automatica, 2013, 49(10): 3072-3078. [4] DONG H, NING B, CAI B, et al. Automatic train control system development and simulation for high-speed railways [J]. IEEE Circuits and Systems Magazine, 2010, 10(2): 6-18. [5] DONG H, ZHU H, LI Y, et al. Parallel intelligent systems for integrated high-speed railway operation control and dynamic scheduling [J]. IEEE Transactions on Cybernetics, 2018, 48: 3381-3389. [6] FAIEGHI M, JALALI A, MASHHADI K E D M. Robust adaptive cruise control of high-speed trains [J]. ISA Transactions, 2014, 53(2): 533-541. [7] MAO Z, TAO G, JIANG B, et al. Adaptive Actuator compensation of position tracking for high-speed trains with disturbances [J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5706-5717. [8] KHMELNITSKY E. On an optimal control problem of train operation [J]. IEEE Transactions on Automatic Control, 2000, 45(7): 1257-1266. [9] ZHUAN X, XIA X. Speed regulation with measured output feedback in the control of heavy haul trains [J]. Automatica, 2008, 44(1): 242-247. [10] LI S, YANG L, GAO Z. Robust sampled-data cruise control scheduling of high speed train [J]. Transportation Research Part C:Emerging Technologies, 2014, 46(46): 274-283. [11] BOTTE M, D’ACIERNO L. Dispatching and rescheduling tasks and their interactions with travel demand and the energy domain: models and algorithms [J]. Urban Rail Transit, 2018, 4(4): 163-197. [12] FENANDEZ P M, SANCHIS I V, YEPES V, et al. A review of modelling and optimisation methods applied to railways energy consumption [J]. Journal of Cleaner Production, 2019, 222(10): 153-162. [13] LU S, HILLMANSEN S, HO T K, et al. Single-train trajectory optimization [J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 743-750. [14] WANG Y, SCHUTTER B D, BOOM T, et al. Optimal trajectory planning for trains—a pseudospectral method and a mixed integer linear programming approach [J]. Transportation Research Part C:Emerging Technologies, 2013, 29(4): 97-114. [15] LIN F, FARDAD M, JOVANOVIC M R. Optimal control of vehicular formations with nearest neighbor interactions [J]. IEEE Transactions on Automatic Control, 2012, 57(9): 2203-2218. [16] GABAY D, MERCIER B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation [J]. Computers & Mathematics with Applications, 1976, 2(1): 17-40. [17] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers [J]. Foundations & Trends in Machine Learning, 2010, 3(1): 1-122. [18] FU L, FARDAD M, JOVANOVIC M R. Design of optimal sparse feedback gains via the alternating direction method of multipliers [J]. IEEE Transactions on Automatic Control, 2013, 58(9): 2426-2431. [19] LI S, YANG L, GAO Z. Distributed optimal control for multiple high-speed train movement: an alternating direction method of multipliers [J]. Automatica, 2020, 112: 108646-108652. [20] HE B, LIU H, WANG Z, et al. A strictly contractive Peaceman-Rachford splitting method for convex programming [J]. SIAM Journal on Optimization, 2014, 24(3): 1011-1040. [21] HE B, MA F, YUAN X. Convergence study on the symmetric version of ADMM with larger step sizes [J]. SIAM Journal on Imaging Sciences, 2016, 9(3): 1467-1501. [22] JIAO Y, JIN Q, LU X, et al. Alternating direction method of multipliers for linear inverse problems [J]. SIAM Journal on Numerical Analysis, 2016, 54(4): 2114-2137. [23] YANG L, LUO J, XU Y, et al. A distributed dual consensus ADMM based on partition for DC-DOPF with carbon emission trading [J]. IEEE Transactions on Industrial Informatics, 2019, 16(3): 1858-1872. [24] NOCEDAL J, WRIGHT S J, MIKOSCH T V, et al. Numerical Optimization[M]. New York: Springer, 1999. [25] DONOHO D L, JOHNSTONE J M. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika, 1994, 81(3): 425-455. |
No related articles found! |
|