广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (05): 52-60.doi: 10.12052/gdutxb.220068

• • 上一篇    下一篇

基于滑模控制的四旋翼飞行器鲁棒三维轨迹跟踪

蔡文琦, 阿拉什·巴哈里·科达巴德   

  1. 挪威科技大学 控制工程学院,特隆赫姆 7491
  • 收稿日期:2022-03-31 出版日期:2022-09-10 发布日期:2022-07-18
  • 作者简介:蔡文琦(1997–),女,博士研究生,主要研究方向为最优控制、强化学习,E-mail:wenqi.cai@ntnu.no

Sliding Mode Control for Robust 3D Trajectory Tracking of Quadcopter Unmanned Autonomous Vehicles

Cai Wen-qi, Kordabad Arash Bahari   

  1. Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
  • Received:2022-03-31 Online:2022-09-10 Published:2022-07-18

摘要: 近年来,无人自主飞行器在军事和民用的众多领域引起了人们的关注,而其轨迹跟踪任务一直是一个热门研究课题。本文提出了一种鲁棒滑模控制,用于控制四旋翼无人机在存在扰动和参数不确定的情况下进行三维轨迹跟踪。首先,建立了一个具有6个方位的四旋翼飞行器的非线性动力学模型。然后,设计了针对质量、惯性和刚度不确定因素的滑模控制器。通过在Matlab Simulink和Universal Mechanism软件系统中进行建模模拟,验证了控制器的三维跟踪效果。最后,使用Pelican四旋翼平台进行了进一步的实验验证,在水平和垂直轴上施加扰动以验证其鲁棒性。仿真和实物验证结果都表明,四旋翼飞行器对特定轨迹的跟踪效果和鲁棒性是令人满意的,证实了所提出的滑模控制算法的正确性和有效性。

关键词: 四旋翼飞行器, 滑模控制, 三维轨迹跟踪, 鲁棒控制

Abstract: Recently, unmanned autonomous vehicles (UAVs) have attracted a lot of attention in both military and civilian fields, where the trajectory tracking mission has been a popular research topic. In this paper, a robust Sliding Mode Control (SMC) is proposed for controlling a quadrotor UAV for 3D trajectory tracking in the presence of perturbations and parameter uncertainties. The nonlinear dynamics of a quadrotor with 6-DOF is first established. Then, a sliding mode controller with mass, inertia, and stiffness uncertainties is designed. The 3D tracking effectiveness of the controller is verified by modeling simulations in Matlab Simulink and Universal Mechanism software systems. Finally, further physical verification is done using a Pelican quadrotor platform with perturbations applied to the horizontal and vertical axes to verify its robustness. Both the simulation results and the practical implementation results show that the tracking effect and the robustness of the quadrotor UAV for a given trajectory are satisfactory, confirming the correctness and effectiveness of the proposed SMC control algorithm.

Key words: quadcopter unmanned autonomous vehicles (UAVs), sliding mode control (SMC), 3D trajectory tracking, robust control

中图分类号: 

  • V249.1
[1] PEROZZI G, EFIMOV D, BIANNIC J M, et al. Trajectory tracking for a quadrotor under wind perturbations: sliding mode control with state-dependent gains [J]. Journal of the Franklin Institute, 2018, 355(12): 4809-4838.
[2] KUMAR R, DECHERING M, PAI A, et al. Differential flatness based hybrid PID/LQR flight controller for complex trajectory tracking in quadcopter UAVs[C]// 2017 IEEE National Aerospace and Electronics Conference (NAECON). Dayton: IEEE, 2017: 113-118.
[3] ALMAKHLES D J. Robust backstepping sliding mode control for a quadrotor trajectory tracking application [J]. IEEE Access, 2019, 8: 5515-5525.
[4] JIANG F, POURPANAH F, HAO Q. Design, implementation, and evaluation of a neural-network-based quadcopter UAV system [J]. IEEE Transactions on Industrial Electronics, 2019, 67(3): 2076-2085.
[5] DEMIR B E, BAYIR R, DURAN F. Real-time trajectory tracking of an unmanned aerial vehicle using a self-tuning fuzzy proportional integral derivative controller [J]. International Journal of Micro Air Vehicles, 2016, 8(4): 252-268.
[6] SANTOS M C P, ROSALES C D, SARAPURA J A, et al. An adaptive dynamic controller for quadrotor to perform trajectory tracking tasks [J]. Journal of Intelligent & Robotic Systems, 2019, 93(1): 5-16.
[7] HERNANDEZ-MARTINEZ E G, FERNANDEZ-ANAYA G, FERREIRA E, et al. Trajectory tracking of a quadcopter UAV with optimal translational control [J]. IFAC-PapersOnLine, 2015, 48(19): 226-231.
[8] GANGA G, DHARMANA M M. MPC controller for trajectory tracking control of quadcopter[C]//2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT). Kollam: IEEE, 2017.
[9] SABANOVIC A, FRIDMAN L M, SPURGEON S, et al. Variable structure systems: from principles to implementation[M]. England: IET, 2004.
[10] HERRERA M, CHAMORRO W, GóMEZ A P, et al. Sliding mode control: An approach to control a quadrotor[C]//2015 Asia-Pacific Conference on Computer Aided System Engineering. Quito: IEEE, 2015: 314-319.
[11] LEE T, LEOK M, MCCLAMROCH N H. Geometric tracking control of a quadrotor UAV on SE (3)[C]// 49th IEEE conference on decision and control (CDC). Atlanta: IEEE, 2010: 5420-5425.
[12] SUMANTRI B, UCHIYAMA N, SANO S, et al. Robust tracking control of a quad-rotor helicopter utilizing sliding mode control with a nonlinear sliding surface [J]. Journal of System Design and Dynamics, 2013, 7(2): 226-241.
[13] YANG Y, YAN Y. Attitude regulation for unmanned quadrotors using adaptive fuzzy gain-scheduling sliding mode control [J]. Aerospace Science and Technology, 2016, 54: 208-217.
[14] SUMANTRI B, UCHIYAMA N, SANO S. Least square based sliding mode control for a quad-rotor helicopter and energy saving by chattering reduction [J]. Mechanical Systems and Signal Processing, 2016, 66: 769-784.
[15] BASHI O I D, HASAN W, AZIS N, et al. Unmanned aerial vehicle quadcopter: a review [J]. Journal of Computational and Theoretical Nanoscience, 2017, 14(12): 5663-5675.
[16] ANTONIO-TOLEDO M E, SANCHEZ E N, ALANIS A Y, et al. Real-time integral backstepping with sliding mode control for a quadrotor uav [J]. IFAC-PapersOnLine, 2018, 51(13): 549-554.
[17] MU?OZ F, ESPINOZA E S, GONZáLEZ-HERNáNDEZ I, et al. Robust trajectory tracking for unmanned aircraft systems using a nonsingular terminal modified super-twisting sliding mode controller [J]. Journal of Intelligent & Robotic Systems, 2019, 93(1): 55-72.
[18] FETHALLA N, SAAD M, MICHALSKA H, et al. Robust observer-based dynamic sliding mode controller for a quadrotor UAV [J]. IEEE Access, 2018, 6: 45846-45859.
[19] SRIDHAR S, KUMAR R, RADMANESH M, et al. Non-linear sliding mode control of a tilting-rotor quadcopter[C]//Dynamic Systems and Control Conference: volume 58271. [S.l.]: American Society of Mechanical Engineers, 2017: V001T09A007.
[20] ELTAYEB A, RAHMAT M F, BASRI M A M, et al. An improved design of an adaptive sliding mode controller for chattering attenuation and trajectory tracking of the quadcopter uav [J]. IEEE Access, 2020, 8: 205968-205979.
[21] BASCI A, CAN K, ORMAN K, et al. Trajectory tracking control of a four rotor unmanned aerial vehicle based on continuous sliding mode controller [J]. Elektronika ir Elektrotechnika, 2017, 23(3): 12-19.
[22] ELTAYEB A, RAHMAT M, ELTOUM M, et al. Robust adaptive sliding mode control design for quadrotor unmanned aerial vehicle trajectory tracking [J]. International Journal of Computing and Digital Systems, 2020, 9(2): 249-257.
[23] LEE S H, KANG S H, KIM Y. Trajectory tracking control of quadrotor UAV[C]//2011 11th International Conference on Control, Automation and Systems. Gyeonggi-do, Korea: IEEE, 2011: 281-285.
[24] QI G, MA S, GUO X, et al. High-order differential feedback control for quadrotor UAV: Theory and experimentation [J]. Electronics, 2020, 9(12): 2001.
[25] KHALIL H K, GRIZZLE J W. Nonlinear systems[M]. 3rd ed. New Jersey: Prentice Hall, 2002.
[1] 刘洋, 彭世国, 马宏志, 廖维新. 下肢外骨骼机器人动力学参数辨识与步态跟踪[J]. 广东工业大学学报, 2022, 39(06): 44-52.
[2] 鲁叶,彭世国. T-S模糊随机时滞系统的鲁棒控制[J]. 广东工业大学学报, 2013, 30(1): 68-72.
[3] 李忠娟, 张新政. 时间滞后离散滑模控制理论研究进展[J]. 广东工业大学学报, 2011, 28(2): 37-39.
[4] 叶玮琼; 余永权;. 液压伺服系统中模糊-滑模控制器的设计及应用[J]. 广东工业大学学报, 2008, 25(2): 74-77.
[5] 杨戈锋; 刘秀湘; 胥布工; . 不确定脉冲多时滞系统的鲁棒H_∞控制[J]. 广东工业大学学报, 2007, 24(4): 25-29.
[6] 张达科; 胡跃明; 胡战虎; . 低抖振非奇异终端滑模控制[J]. 广东工业大学学报, 2007, 24(03): 32-36.
[7] 陈德银; 金朝永;. 不确定离散关联时滞大系统分散鲁棒控制——LMI方法[J]. 广东工业大学学报, 2007, 24(03): 37-41.
[8] 谢湘生; . 离散广义系统的鲁棒控制器设计[J]. 广东工业大学学报, 2001, 18(2): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!