广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (01): 19-28.doi: 10.12052/gdutxb.220097

• • 上一篇    下一篇

网约车乘客隐私保护的演化博弈研究

董振宁1, 王俊杰1, 罗克文2, 陈浪城3   

  1. 1. 广东工业大学 管理学院,广东 广州 510520;
    2. 广东工业大学 人事处,广东 广州 510006;
    3. 广东工业大学 网络信息与现代教育技术中心,广东 广州 510006
  • 收稿日期:2022-05-31 出版日期:2023-01-25 发布日期:2023-01-12
  • 作者简介:董振宁(1977-),男,副教授,博士,主要研究方向为供应链管理、运营管理,E-mail:zndong@gdut.edu.cn
  • 基金资助:
    广东省哲学社会科学规划学科共建项目(GD18XJY07);广东省哲学社会科学规划项目(GD21CJY24)

An Evolutionary Game Analysis of Online Car-hailing Passengers' Privacy Protection

Dong Zhen-ning1, Wang Jun-jie1, Luo Ke-wen2, Chen Lang-cheng3   

  1. 1. School of Management, Guangdong University of Technology, Guangzhou 510520, China;
    2. Personnel Department, Guangdong University of Technology, Guangzhou 510006, China;
    3. Center of Campus Network & Modern Educational Technology, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-05-31 Online:2023-01-25 Published:2023-01-12

摘要: 为了研究网约车隐私保护问题,本文构建了政府(监管,不监管)和平台(自律,不自律)的演化博弈模型,运用复制动态方程寻找演化稳定策略,并运用 Matlab 软件模拟不同情形下的演化路径,分析政府监管带来声誉提升的程度等4个参数对演化路径的影响。研究发现:(1) 政府监管收益大于不监管,平台自律收益大于不自律时,会出现(监管,自律)的理想结果;(2) 平台自律成本较低、政府监管成本较高时,即使政府不监管,平台也会自律;(3) 公众对政府监管给予肯定的程度提升、政府监管成本降低会引导政府由不监管转化为监管;(4) 平台获得来自社会的正向收益提高、自律成本降低会使平台由不自律转化为自律。这些结论对于政府优化监管政策设计具有指导意义。

关键词: 网约车, 隐私保护, 演化博弈, Matlab仿真

Abstract: To study the privacy protection of online car-hailing, an evolutionary game model including the government (regulatory, non-regulatory) and platform (self-discipline, non-self-discipline) is constructed, using the replication dynamic equation to find an evolutionary stable strategy, and using Matlab to simulate the situation under different circumstances. The influences of four parameters, including the degree of reputation improvement brought by government regulation, on the evolution path, are analyzed. The study finds : (1) When the benefits of government regulation are greater than those of non-regulation, and the benefits of platform self-discipline are greater than those of non-self-regulation, ideal result (regulation, self-regulation) will appear; (2) When the cost of platform self-regulation is low and the cost of government regulation is high, even if the government does not supervise, the platform will also be self-disciplined; (3) The increased public affirmation of government regulation and the reduction of government regulation costs leads the government to transform from non-regulation to regulation; (4) When the platform obtains positive benefits from society and reduces the cost of self-discipline, its strategy changes from non-self-discipline to self-discipline. These conclusions have guiding significance for the government to optimize the design of regulatory policy.

Key words: car-hailing, privacy protection, evolutionary game, Matlab simulation

中图分类号: 

  • F273.4
[1] 王静. 中国网约车的监管困境及解决[J]. 行政法学研究, 2016(2): 49-59.
WANG J. Regulatory quandary and its solutions of internet chauffeured car in China [J]. Administrative Law Review, 2016(2): 49-59.
[2] 付淑换, 石岿然. 媒体作用下网约车平台与政府协同治理的演化博弈研究[J]. 运筹与管理, 2020, 29(11): 29-36.
FU S H, SHI K R. Evolutionary game study between government and enterprises in online car-hailing under the media [J]. Operations Research and Management Science, 2020, 29(11): 29-36.
[3] 侯登华. 共享经济下网络平台的法律地位——以网约车为研究对象[J]. 政法论坛, 2017, 35(1): 157-164.
HOU D H. On the legal status of network platform under Shared economy —taking the online car-hailing as the research object [J]. Tribune of Political Science and Law, 2017, 35(1): 157-164.
[4] 佘颖. 中国消费者协会点名网约车十大乱象[EB/OL]. [2018-05-23]. http://www.ce.cn/xwzx/gnsz/gdxw/201805/23/t20180523_29218763.shtml.
[5] 前瞻网. Uber因2016年数据泄露处理不当收到英国和荷兰共计92万英镑罚单[EB/OL]. [2018-11-28]. https://baijiahao.baidu.com/s?id=1618341655191873341&wfr=spider&for=pc.
[6] 中国长安网. 国家网信办: “滴滴出行”严重违法违规收集使用个人信息下架整改[EB/OL]. [2021-07-04]. https://baijiahao.baidu.com/s?id=1704361693953067679&wfr=spider&for=pc.
[7] POSEN H A. Ridesharing in the sharing economy: should regulators impose Uber regulations on Uber [J]. Iowa Law Review, 2015, 101(1): 405-433.
[8] 付淑换, 石岿然. 网约车行业监管困境的演化博弈分析及优化对策[J]. 经济问题, 2019(12): 8-15.
FU S H, SHI K R. Evolutionary game analysis of regulatory dilemma in online car-hailing and optimizing policy [J]. On Economic Problems, 2019(12): 8-15.
[9] 冯骅, 王勇. 网约车监管的改革方向: 实施双重监管体系[J]. 企业经济, 2020(2) : 139-145.
[10] 雷丽彩, 高尚, 蒋艳, 等. 网约车新政下网约车平台与网约车司机的演化博弈分析[J]. 管理工程学报, 2020, 34(1): 55-62.
LEI L C, GAO S, JIANG Y, et al. Evolutionary game analysis of car-hailing industry between platforms and drivers based on new policies of car-hailing [J]. Journal of Industrial Engineering and Engineering Management, 2020, 34(1): 55-62.
[11] 张茂元, 廖安. 技术视角下的互联网平台监管研究——以网约车平台为例[J]. 行政论坛, 2021, 28(6): 114-121.
[12] AL-JABRI I M, EID M I, ABED A. The willingness to disclose personal information: trade-off between privacy concerns and benefits [J]. Information and Computer Security, 2019, 28(2): 161-181.
[13] 朱侯, 张明鑫. 移动APP用户隐私信息设置行为影响因素及其组态效应研究[J]. 情报科学, 2021, 39(7): 54-62.
ZHU H, ZHANG M X. Influential factors and configuration effects of user privacy setting behavior in mobile app [J]. Information Science, 2021, 39(7): 54-62.
[14] 周林兴, 韩永继. 大数据环境下个人信息治理研究[J]. 情报科学, 2021, 39(3): 11-18.
ZHOU L X, HAN Y J. Research on personal information governance in big data environment [J]. Information Science, 2021, 39(3): 11-18.
[15] LI X, YANG Z, ZHOU S. Research on legal risk prevention and control mechanism of personal data in china's shared economy model[C]//2018 4th International Conference on Social Science and Higher Education (ICSSHE 2018) . Paris: Atlantis Press, 2018: 586-590.
[16] 毛俊响, 王思洋. 论网约车个人信息的保护[J]. 探索与争鸣, 2019(6): 150-156.
MAO J X, WANG S Y. On the protection of personal information of online car-hailing industry [J]. Exploration and Free Views, 2019(6): 150-156.
[17] CHENG X, HOU T, MOU J. Investigating perceived risks and benefits of information privacy disclosure in IT-enabled ride-sharing [J]. Inf Manag, 2021, 58(6) : 103450.
[18] TAYLOR P D, JONKER L B. Evolutionarily stable strategies and game dynamics [J]. Mathematical Biosciences, 1978, 40(1-2): 145-156.
[19] FRIEDMAN D. Evolutionary game in economics [J]. Econometrica, 1991, 59(3): 637-666.
[1] 蒋丽, 谢胜利, 张彦. 面向6G网络的联邦学习资源协作激励机制设计[J]. 广东工业大学学报, 2021, 38(06): 47-52,83.
[2] 聂敏航, 欧毓毅. 一种可自定义金额的数字货币去中心化混淆方案[J]. 广东工业大学学报, 2021, 38(01): 64-68.
[3] 钟映竑, 李平. 我国智能手机产业组建专利池的演化博弈分析[J]. 广东工业大学学报, 2017, 34(03): 72-76.
[4] 朱莹, 张成科, 朱怀念. 基于演化博弈的供应链成员间研发竞争与合作分析[J]. 广东工业大学学报, 2015, 32(3): 46-50.
[5] 曹铭, 张成科, 朱怀念. 劳资关系演化博弈分析——以珠三角地区为背景[J]. 广东工业大学学报, 2015, 32(04): 1-7.
[6] 许青林, 覃国民, 姜文超, 谢燕丽. 敏感数据自主可控的云存储平台元数据管理[J]. 广东工业大学学报, 2014, 31(4): 46-53.
[7] 刘洪伟, 刘智慧, 朱慧, 陆涛. 大数据环境下跨组织间协同优化决策的隐私保护算法[J]. 广东工业大学学报, 2014, 31(3): 21-26.
[8] 刘洪伟,石雅强,梁周扬,肖岳. 面向聚类挖掘的局部旋转扰动隐私保护算法[J]. 广东工业大学学报, 2012, 29(3): 28-34.
[9] 李凌宇, 郭贵法, 许锦标. 基于模拟退火遗传算法的PID参数整定与优化[J]. 广东工业大学学报, 2010, 27(2): 80-83.
[10] 陈英华; 金爱娟; . 双三相电机的SVPWM控制系统仿真[J]. 广东工业大学学报, 2005, 22(1): 72-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!