广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (02): 39-44.doi: 10.12052/gdutxb.210191

• 综合研究 • 上一篇    下一篇

一种基于Fréchet距离的谱聚类算法

樊娟1, 邓秀勤1, 刘玉兰1,2   

  1. 1. 广东工业大学 数学与统计学院, 广东 广州 510520;
    2. 南京大学 新型软件技术国家重点实验室, 江苏 南京 210093
  • 收稿日期:2021-12-02 出版日期:2023-03-25 发布日期:2023-04-07
  • 通信作者: 邓秀勤(1966-),女,教授,硕士生导师,主要研究方向为数据挖掘、机器学习,E-mail:dxq706@gdut.edu.cn
  • 作者简介:樊娟(1997-),女,硕士研究生,主要研究方向为图像处理、数据挖掘
  • 基金资助:
    广东省自然科学基金资助项目(2020A1515010408);南京大学计算机软件新技术国家重点实验室研究项目(KFKT2020B17)

A Spectral Clustering Algorithm Based on Fréchet Distance

Fan Juan1, Deng Xiu-qin1, Liu Yu-lan1,2   

  1. 1. School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510520, China;
    2. State Key Lab for NoveI Software Technology, Nanjing University, Nanjing 210093, China
  • Received:2021-12-02 Online:2023-03-25 Published:2023-04-07

摘要: 为提升谱聚类的聚类精度和适用性,提出了一种基于Fréchet距离的谱聚类算法(A Spectral Clustering Algorithm Based on Fréchet Distance, FSC),通过Fréchet距离构建相似度矩阵,并将重构的相似矩阵应用于谱聚类中。利用Fréchet距离度量数据特征维度的相似性对样本的多个特征进行分析,进而扩展典型谱聚类算法的适用性。FSC不仅适用于低维流形结构清晰的数据,也适用于高维或稀疏数据,如高光谱图像数据。在3个经典的高光谱图像上的实验结果表明,FSC算法有效提高了高光谱图像聚类的精度。

关键词: 高光谱图像, Fréchet距离, 聚类, 相似矩阵

Abstract: In order to improve the clustering accuracy and applicability of spectral clustering, a spectral clustering algorithm based on Fréchet distance (called FSC) is proposed. Firstly a similarity matrix is constructed by Fréchet distance, then the reconstructed similarity matrix is applied to the spectral clustering. Using Fréchet distance to measure the similarity of data feature dimensions can extend the applicability of typical spectral clustering algorithms. FSC is not only suitable for data with clear low-dimensional manifold structure, but also for high-dimensional or sparse data, such as hyperspectral images. The experimental results on three hyperspectral images show that the FSC algorithm effectively improves the accuracy of hyperspectral images clustering.

Key words: hyperspectral images, Fréchet distance, clustering, affinity matrix

中图分类号: 

  • TP751.1
[1] ZHU M, HUANG D, HU X J, et al. Application of hyperspectral technology in detection of agricultural products and food: a review [J]. Food Science & Nutrition, 2020, 8(10): 5206-5214.
[2] 马少鹏, 梁路, 滕少华. 一种轻量级的高光谱遥感图像分类方法[J]. 广东工业大学学报, 2021, 38(3): 29-35.
MA S P, LIANG L, TENG S H. A lightweight hyperspectral remote sensing image classification method [J]. Journal of Guangdong University of Technology, 2021, 38(3): 29-35.
[3] ALSAMHI S H, MA O. Collaboration of drone and internet of public safety things in smart cities: an overview of QoS and network performance optimization [J]. Drones, 2019, 3(1): 13.
[4] KUMAR V S, SIVAPRAKASAM S A, NAGANATHAN R, et al. Fast K-means technique for hyper-spectral image segmentation by multiband reduction [J]. Pollack Periodica, 2019, 14(3): 201-212.
[5] SALEM R B, ETTABAA K S, HAMDI M A. Fuzzy C-mean for unsupervised spectral-spatial SVM classification of hyperspectral images[C]//2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA). Piscataway, NJ: IEEE, 2017: 759-765.
[6] SHAHID K T, MALHOTRA A, SCHIZAS I D, et al. Unsupervised kernel correlations based hyperspectral clustering with missing pixels [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(6): 1799-1810.
[7] WANG R, NIE F, YU W. Fast spectral clustering with anchor graph for large hyperspectral images [J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 2003-2007.
[8] YE J, ZHAO Z, LIU H. Adaptive distance metric learning for clustering[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2007: 1-7.
[9] SUN W, PENG J, YANG G, et al. Correntropy-based sparse spectral clustering for hyperspectral band selection [J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(3): 484-488.
[10] ZHAO Y, YUAN Y, WANG Q. Fast spectral clustering for unsupervised hyperspectral image classification [J]. Remote Sensing, 2019, 11(4): 399.
[11] ZHAI H, ZHANG H, ZHANG L, et al. A new sparse subspace clustering algorithm for hyperspectral remote sensing imagery [J]. IEEE Geoscience and Remote Sensing Letters, 2016, 14(1): 43-47.
[12] 龙咏红, 邓秀勤, 王卓薇. 基于信息熵的加权块稀疏子空间聚类算法[J]. 数据采集与处理, 2021, 36(3): 544-555.
LONG Y H, DENG X Q, WANG Z W. Weighted block sparse subspace clustering algorithm based on information entropy [J]. Journal of Data Acquisition and Processing, 2021, 36(3): 544-555.
[13] YAN Q, DING Y, ZHANG J J, et al. A discriminated similarity matrix construction based on sparse subspace clustering algorithm for hyperspectral imagery [J]. Cognitive Systems Research, 2019, 53: 98-110.
[14] WENG H, WANG S, WAN Y, et al. Discrete Fréchet distance algorithm based criterion of transformer differential protection with the immunity to saturation of current transformer [J]. International Journal of Electrical Power & Energy Systems, 2020, 115: 105449.
[15] BANG Y, KIM J, YU K. An improved map-matching technique based on the Fréchet distance approach for pedestrian navigation services [J]. Sensors, 2016, 16(10): 1768.
[16] FRÉCHET M M. Sur quelques points du calcul fonctionnel [J]. Rendiconti del Circolo Matematico di Palermo (1884-1940), 1906, 22(1): 1-72.
[17] 张文昊. 弗雷歇距离判断曲线相似度的嵌入式模块[J]. 单片机与嵌入式系统应用, 2020, 20(9): 17-20.
ZHANG W H. Embedded module of curve similarity judging based on Fréchet distance [J]. Microcontrollers Embedded Systems, 2020, 20(9): 17-20.
[1] 莫赞, 范梦婷, 刘洪伟, 严杨帆. 基于在线用户行为的产品非对称竞争市场结构研究[J]. 广东工业大学学报, 2023, 40(02): 111-119.
[2] 范梦婷, 刘洪伟, 高鸿铭, 何锐超. 电子商务平台下的竞争产品市场结构研究[J]. 广东工业大学学报, 2019, 36(06): 32-37.
[3] 何庆祥, 张巍. 改进的聚类算法在恐怖袭击事件中的应用[J]. 广东工业大学学报, 2019, 36(04): 24-30.
[4] 谢振东, 冷梦甜, 吴金成. 基于一卡通数据的公交站点识别方法分析与研究[J]. 广东工业大学学报, 2019, 36(01): 23-28.
[5] 张巍, 麦志深. 核模糊谱聚类LOF降噪方法研究[J]. 广东工业大学学报, 2018, 35(06): 77-82.
[6] 肖河曼, 成思源, 杨雪荣, 李苏洋, 张海燕. 基于功能相似矩阵的异类产品专利规避设计[J]. 广东工业大学学报, 2018, 35(05): 5-10.
[7] 马飞, 李娟. 基于聚类算法的MOOCs学习者分类及学习行为模式研究[J]. 广东工业大学学报, 2018, 35(03): 18-23.
[8] 王荣荣, 傅秀芬. 一种改进的mpts-HDBSCAN算法[J]. 广东工业大学学报, 2017, 34(03): 49-53.
[9] 陈丽, 曹熙, 林俊杰, 高鸿铭, 刘飞雅, 李艳艳. 基于数据挖掘的短期电力负荷风险预测分析[J]. 广东工业大学学报, 2017, 34(03): 105-109.
[10] 陈继峰, 刘广聪, 彭成平. 一种改进的无线传感器网络DV-Hop定位算法[J]. 广东工业大学学报, 2017, 34(02): 80-85.
[11] 申小敏, 李保俊, 孙旭, 徐维超. 基于卷积神经网络的大规模人脸聚类[J]. 广东工业大学学报, 2016, 33(06): 77-84.
[12] 王波, 钟映春, 陈俊彬. 融合AP和GMM的说话人识别方法研究[J]. 广东工业大学学报, 2015, 32(04): 145-149.
[13] 滕少华, 吴昊, 李日贵, 张巍, 刘冬宁, 梁路. 可调多趟聚类挖掘在电信数据分析中的应用[J]. 广东工业大学学报, 2014, 31(3): 1-7.
[14] 蒋盛益, 王连喜. 聚类分析研究的挑战性问题[J]. 广东工业大学学报, 2014, 31(3): 32-38.
[15] 李云, 鲍鸿. 语音分组识别技术的研究[J]. 广东工业大学学报, 2014, 31(2): 54-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!