广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (02): 44-49.doi: 10.12052/gdutxb.230008

• 土木工程 • 上一篇    

高模量改性沥青的零剪切黏度研究

尹应梅, 区芷欣, 汤良麒, 孙晓龙, 吕建兵   

  1. 广东工业大学 土木与交通工程学院, 广东 广州 510006
  • 收稿日期:2023-01-28 发布日期:2024-04-23
  • 作者简介:尹应梅(1976-),女,副教授,博士,主要研究方向为道路工程结构与材料,E-mail:merry025@163.com
  • 基金资助:
    国家自然科学基金资助项目(51508109);广东省自然科学基金资助项目(2019A1515011397)

Zero Shear Viscosity Analysis of High Modulus Modified Asphalt

Yin Ying-mei, Ou Zhi-xin, Tang Liang-qi, Sun Xiao-long, Lyu Jian-bing   

  1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-01-28 Published:2024-04-23

摘要: 零剪切黏度(Zero-shear Viscosity, ZSV)是表征沥青抵抗永久变形能力的高温性能评价指标。为明确不同测试方法及计算模型对高模量改性沥青的ZSV计算值的影响及适用性,以推广高模量改性剂在道路工程的应用,采用动态剪切流变仪对基质沥青(Base Asphalt, BA)和含不同质量分数改性剂的高模量改性沥青(K1-HMB)进行60 ℃频率扫描试验和60 ℃稳态流动试验,并采用Cross流变模型及Carreau流变模型分别拟合沥青的ZSV,最后采用灰色关联分析法探讨ZSV与软化点之间的关联程度。结果表明:BA及K1-HMB属于伪塑性流体,在加载频率作用下均呈现剪切变稀的特征;含0.6%改性剂的K1-HMB具有最高的弹性恢复能力,K1-HM改性剂的建议质量分数为0.4%~0.6%;60 ℃频率扫描试验结合Cross模型计算的ZSV拟合值具有最高的可信度,可作为高模量改性沥青高温性能的评价指标。

关键词: 道路工程, 高模量改性沥青, 高温性能, 零剪切黏度

Abstract: Zero-shear viscosity (ZSV) is an evaluation index for viscosity of asphalt to permanent deformation at high temperature. To investigate the applicability and influence of different test methods and calculation models on ZSV fitting for high modulus modified asphalt, and to promote the application of high modulus modifiers in road engineering, dynamic shear rheometer was used to perform 60 ℃ frequency sweep test and 60 ℃ steady flow test on base asphalt (BA) and high modulus modified asphalt (K1-HMB) with different modifier content. ZSV of test materials was fitted by Cross rheological model and Carreau rheological model. Finally, grey correlation analysis was used to further explore the degree of correlation between ZSV and softening point. The results show that BA and K1-HMB are pseudo-plastic fluids and both exhibited shear thinning characteristics under loading frequency. K1-HMB with 0.6% content had the highest elastic recovery capacity, and the recommended content of K1-HM modifiers was 0.4%~0.6%. The ZSV fitting value based on the 60 ℃ frequency sweep test combined with Cross model had the highest reliability and could be used as an evaluation index of the high temperature performance of high modulus modified asphalt.

Key words: road engineering, high modulus modified asphalt, high temperature performance, zero shear viscosity

中图分类号: 

  • U416.217
[1] 姚欢, 曾迪, 宋小金. 聚合物改性沥青高温路用性能分析[J]. 山东交通科技, 2019(5): 64-67.
YAO H, ZENG D, SONG X J. Analysis of high temperature pavement performance of polymer modified asphalt [J]. Shandong Transportation Technology, 2019(5): 64-67.
[2] BAYARMAA B. 沥青零剪切黏度试验方法及计算模型研究[D]. 大连: 大连理工大学, 2016.
[3] NIVITHA M R, KRISHNAN J M. Rheological characterisation of unmodified and modified bitumen in the 90 ℃~200 ℃ temperature regime [J]. Road Materials and Pavement Design, 2020, 21: 1341-1358.
[4] 耿韩, 李立寒. 道路沥青零剪切黏度与毛细管黏度的比较研究[J]. 石油沥青, 2010, 24(3): 15-21.
GENG H, LI L H. Comparative research on zero shear viscosity and capillary viscosity of paving asphalt [J]. Petroleum Asphalt, 2010, 24(3): 15-21.
[5] 银花, 李凯. 沥青零剪切黏度与高温流变参数灰色关联分析[J]. 建筑材料学报, 2020, 23(1): 108-113.
YIN H, LI K. Grey correlation analysis of zero shear viscosity and high temperature rheological parameters of asphalt [J]. Journal of Building Materials, 2020, 23(1): 108-113.
[6] 胡松山, 王浩, 覃润浦, 等. 沥青四组分与不同加载模式下橡胶沥青零剪切黏度相关性[J]. 复合材料学报, 2018, 35(4): 999-1013.
HU S S, WANG H, QIN R P, et al. Correlation between asphalt four components and asphalt rubber zero shear viscosity under different loading modes [J]. Acta Materiae Compositae Sinica, 2018, 35(4): 999-1013.
[7] SHENOY A. Model-fitting the master curves of the dynamic shear rheometer data to extract a rut-controlling term for asphalt pavements [J]. Journal of Testing & Evaluation, 2002, 30(2): 95-102.
[8] LIU H Q, ZEIADA W, AL-KHATEEB G G, et al. Characterization of the shear-thinning behavior of asphalt binders with consideration of yield stress [J]. Materials and Structures, 2020, 53(4): 105.
[9] QASIM Z I, ABED A H, ALMOMEN K A. Evaluation of mixing and compaction temperatures (MCT) for modified asphalt binders using zero shear viscosity and cross-williamson model[J]. Case Studies in Construction Materials, 2019, 11: e00302.
[10] SHARMA A, NAGA G R R, KUMAR P, et al. Development of an empirical relationship between non-recoverable creep compliance & zero shear viscosity for wide-ranging stiffness of asphalt binders [J]. Construction and Building Materials, 2022, 326: 126764.
[11] 郭咏梅, 倪富健. 几种改性沥青零剪切黏度的测试分析[J]. 交通运输工程与信息学报, 2013, 11(2): 42-46.
GUO Y M, NI F J. Analysis on zero shear viscosity measurement of several modified asphalts [J]. Journal of Transportation Engineering and Information, 2013, 11(2): 42-46.
[12] SHARMA A, RANSINCHUNG R, KUMAR P. Applicability of various mixing rules for hot asphalt recycled binders [J]. Road Materials and Pavement Design, 2021, 23: 2547-2566.
[13] ZEIADA W, LIU H Q, AL-KHATEEB G G, et al. Evaluation of test methods for measurement of zero shear viscosity (ZSV) of asphalt binders [J]. Construction and Building Materials, 2022, 325: 126794.
[14] 樊亮, 樊秀芝, 宋小金, 等. 沥青零剪切黏度的计算模型与方法比较[J]. 新型建筑材料, 2012, 39(5): 20-23.
FAN L, FAN X Z, SONG X J, et al. Comparison of calculation model and methods for asphalt zero shear viscosity [J]. New Building Materials, 2012, 39(5): 20-23.
[15] 杨娥. TLA混合沥青的高温性能指标ZSV研究[J]. 中外公路, 2016, 36(1): 217-220.
YANG E. Study on high temperature performance index ZSV of TLA mixed asphalt [J]. Journal of China & Foreign Highway, 2016, 36(1): 217-220.
[16] 孟勇军, 张肖宁, 贾娟. 基于不同加载模式的沥青零剪切黏度研究[J]. 交通运输工程学报, 2008(4): 35-39.
MENG Y J, ZHANG X N, JIA J. Research on zero shear viscosity of asphalt based on different loading modes [J]. Journal of Traffic and Transportation Engineering, 2008(4): 35-39.
[17] WANG Z X. Correlation analysis of sequences with interval grey numbers based on the kernel and greyness degree [J]. Kybernetes, 2013, 42(2): 309-317.
[18] 孙磊, 佟丽莉. Cox-Merz规则和时温叠加原理在聚合物剪切黏度测量中的应用与研究[J]. 纤维复合材料, 2013, 30(4): 8-12.
SUN L, TONG L L. Application of Cox-Merz relation and time-temperature superposition in the measurement of polymer shear viscosity [J]. Fiber Composites, 2013, 30(4): 8-12.
[19] MOREA F, AGNUSDEI J O, ZERBINO R. Comparison of methods for measuring zero shear viscosity in asphalts [J]. Materials and Structures, 2010, 43: 499-507.
[20] XU F C, ZHAO Y, LI K J. Using waste plastics as Asphalt modifier: a review [J]. Materials, 2022, 15(1): 110.
[21] 敖清文, 田永娅. PE塑料改性沥青试验研究[J]. 公路交通技术, 2016, 32(3): 35-38.
AO Q W, TIAN Y Y. Experimental study on PE plastic modified asphalt [J]. Technology of Highway and Transport, 2016, 32(3): 35-38.
[22] 周正峰, 于晓涛, 陶雅乐, 等. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J/OL]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
ZHOU Z F, YU X T, TAO Y L, et al. High-temperature performance evaluation of resin and elastomer high viscosity asphalt based on grey correlation analysis[J/OL]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(7): 2078-2088.
[1] 孙晓龙, 袁俊申, 于华洋, 覃潇, 尹应梅. 反光标线材料及其逆反射性能影响因素研究进展[J]. 广东工业大学学报, 2021, 38(04): 81-94.
[2] 吕惠卿, 方一钱, 尹应梅. 考虑层间接触的旧水泥混凝土路面加铺厚沥青层的力学分析[J]. 广东工业大学学报, 2019, 36(05): 56-62.
[3] 黄太昌, 尹应梅, 吕建兵, 李俊禧. 不同RAP掺量温拌再生改性沥青抗变形性能研究[J]. 广东工业大学学报, 2019, 36(03): 103-110.
[4] 孙晓龙, 马强, 邹超, 贺绍华, 孟涛, 王娉诺. 多因素状况下热阻涂料固化特性及机理研究[J]. 广东工业大学学报, 2019, 36(01): 100-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!