广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (02): 44-49.doi: 10.12052/gdutxb.230008
• 土木工程 • 上一篇
尹应梅, 区芷欣, 汤良麒, 孙晓龙, 吕建兵
Yin Ying-mei, Ou Zhi-xin, Tang Liang-qi, Sun Xiao-long, Lyu Jian-bing
摘要: 零剪切黏度(Zero-shear Viscosity, ZSV)是表征沥青抵抗永久变形能力的高温性能评价指标。为明确不同测试方法及计算模型对高模量改性沥青的ZSV计算值的影响及适用性,以推广高模量改性剂在道路工程的应用,采用动态剪切流变仪对基质沥青(Base Asphalt, BA)和含不同质量分数改性剂的高模量改性沥青(K1-HMB)进行60 ℃频率扫描试验和60 ℃稳态流动试验,并采用Cross流变模型及Carreau流变模型分别拟合沥青的ZSV,最后采用灰色关联分析法探讨ZSV与软化点之间的关联程度。结果表明:BA及K1-HMB属于伪塑性流体,在加载频率作用下均呈现剪切变稀的特征;含0.6%改性剂的K1-HMB具有最高的弹性恢复能力,K1-HM改性剂的建议质量分数为0.4%~0.6%;60 ℃频率扫描试验结合Cross模型计算的ZSV拟合值具有最高的可信度,可作为高模量改性沥青高温性能的评价指标。
中图分类号:
[1] 姚欢, 曾迪, 宋小金. 聚合物改性沥青高温路用性能分析[J]. 山东交通科技, 2019(5): 64-67. YAO H, ZENG D, SONG X J. Analysis of high temperature pavement performance of polymer modified asphalt [J]. Shandong Transportation Technology, 2019(5): 64-67. [2] BAYARMAA B. 沥青零剪切黏度试验方法及计算模型研究[D]. 大连: 大连理工大学, 2016. [3] NIVITHA M R, KRISHNAN J M. Rheological characterisation of unmodified and modified bitumen in the 90 ℃~200 ℃ temperature regime [J]. Road Materials and Pavement Design, 2020, 21: 1341-1358. [4] 耿韩, 李立寒. 道路沥青零剪切黏度与毛细管黏度的比较研究[J]. 石油沥青, 2010, 24(3): 15-21. GENG H, LI L H. Comparative research on zero shear viscosity and capillary viscosity of paving asphalt [J]. Petroleum Asphalt, 2010, 24(3): 15-21. [5] 银花, 李凯. 沥青零剪切黏度与高温流变参数灰色关联分析[J]. 建筑材料学报, 2020, 23(1): 108-113. YIN H, LI K. Grey correlation analysis of zero shear viscosity and high temperature rheological parameters of asphalt [J]. Journal of Building Materials, 2020, 23(1): 108-113. [6] 胡松山, 王浩, 覃润浦, 等. 沥青四组分与不同加载模式下橡胶沥青零剪切黏度相关性[J]. 复合材料学报, 2018, 35(4): 999-1013. HU S S, WANG H, QIN R P, et al. Correlation between asphalt four components and asphalt rubber zero shear viscosity under different loading modes [J]. Acta Materiae Compositae Sinica, 2018, 35(4): 999-1013. [7] SHENOY A. Model-fitting the master curves of the dynamic shear rheometer data to extract a rut-controlling term for asphalt pavements [J]. Journal of Testing & Evaluation, 2002, 30(2): 95-102. [8] LIU H Q, ZEIADA W, AL-KHATEEB G G, et al. Characterization of the shear-thinning behavior of asphalt binders with consideration of yield stress [J]. Materials and Structures, 2020, 53(4): 105. [9] QASIM Z I, ABED A H, ALMOMEN K A. Evaluation of mixing and compaction temperatures (MCT) for modified asphalt binders using zero shear viscosity and cross-williamson model[J]. Case Studies in Construction Materials, 2019, 11: e00302. [10] SHARMA A, NAGA G R R, KUMAR P, et al. Development of an empirical relationship between non-recoverable creep compliance & zero shear viscosity for wide-ranging stiffness of asphalt binders [J]. Construction and Building Materials, 2022, 326: 126764. [11] 郭咏梅, 倪富健. 几种改性沥青零剪切黏度的测试分析[J]. 交通运输工程与信息学报, 2013, 11(2): 42-46. GUO Y M, NI F J. Analysis on zero shear viscosity measurement of several modified asphalts [J]. Journal of Transportation Engineering and Information, 2013, 11(2): 42-46. [12] SHARMA A, RANSINCHUNG R, KUMAR P. Applicability of various mixing rules for hot asphalt recycled binders [J]. Road Materials and Pavement Design, 2021, 23: 2547-2566. [13] ZEIADA W, LIU H Q, AL-KHATEEB G G, et al. Evaluation of test methods for measurement of zero shear viscosity (ZSV) of asphalt binders [J]. Construction and Building Materials, 2022, 325: 126794. [14] 樊亮, 樊秀芝, 宋小金, 等. 沥青零剪切黏度的计算模型与方法比较[J]. 新型建筑材料, 2012, 39(5): 20-23. FAN L, FAN X Z, SONG X J, et al. Comparison of calculation model and methods for asphalt zero shear viscosity [J]. New Building Materials, 2012, 39(5): 20-23. [15] 杨娥. TLA混合沥青的高温性能指标ZSV研究[J]. 中外公路, 2016, 36(1): 217-220. YANG E. Study on high temperature performance index ZSV of TLA mixed asphalt [J]. Journal of China & Foreign Highway, 2016, 36(1): 217-220. [16] 孟勇军, 张肖宁, 贾娟. 基于不同加载模式的沥青零剪切黏度研究[J]. 交通运输工程学报, 2008(4): 35-39. MENG Y J, ZHANG X N, JIA J. Research on zero shear viscosity of asphalt based on different loading modes [J]. Journal of Traffic and Transportation Engineering, 2008(4): 35-39. [17] WANG Z X. Correlation analysis of sequences with interval grey numbers based on the kernel and greyness degree [J]. Kybernetes, 2013, 42(2): 309-317. [18] 孙磊, 佟丽莉. Cox-Merz规则和时温叠加原理在聚合物剪切黏度测量中的应用与研究[J]. 纤维复合材料, 2013, 30(4): 8-12. SUN L, TONG L L. Application of Cox-Merz relation and time-temperature superposition in the measurement of polymer shear viscosity [J]. Fiber Composites, 2013, 30(4): 8-12. [19] MOREA F, AGNUSDEI J O, ZERBINO R. Comparison of methods for measuring zero shear viscosity in asphalts [J]. Materials and Structures, 2010, 43: 499-507. [20] XU F C, ZHAO Y, LI K J. Using waste plastics as Asphalt modifier: a review [J]. Materials, 2022, 15(1): 110. [21] 敖清文, 田永娅. PE塑料改性沥青试验研究[J]. 公路交通技术, 2016, 32(3): 35-38. AO Q W, TIAN Y Y. Experimental study on PE plastic modified asphalt [J]. Technology of Highway and Transport, 2016, 32(3): 35-38. [22] 周正峰, 于晓涛, 陶雅乐, 等. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J/OL]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088. ZHOU Z F, YU X T, TAO Y L, et al. High-temperature performance evaluation of resin and elastomer high viscosity asphalt based on grey correlation analysis[J/OL]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(7): 2078-2088. |
[1] | 孙晓龙, 袁俊申, 于华洋, 覃潇, 尹应梅. 反光标线材料及其逆反射性能影响因素研究进展[J]. 广东工业大学学报, 2021, 38(04): 81-94. |
[2] | 吕惠卿, 方一钱, 尹应梅. 考虑层间接触的旧水泥混凝土路面加铺厚沥青层的力学分析[J]. 广东工业大学学报, 2019, 36(05): 56-62. |
[3] | 黄太昌, 尹应梅, 吕建兵, 李俊禧. 不同RAP掺量温拌再生改性沥青抗变形性能研究[J]. 广东工业大学学报, 2019, 36(03): 103-110. |
[4] | 孙晓龙, 马强, 邹超, 贺绍华, 孟涛, 王娉诺. 多因素状况下热阻涂料固化特性及机理研究[J]. 广东工业大学学报, 2019, 36(01): 100-106. |
|